US009195684B2

a2 United States Patent

Grube et al.

US 9,195,684 B2
Nov. 24, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

REDUNDANT TASK EXECUTION IN A
DISTRIBUTED STORAGE AND TASK
NETWORK

Applicants: Gary W. Grube, Barrington Hills, IL.
(US); Timothy W. Markison, Mesa, AZ

(US)

Inventors: Gary W. Grube, Barrington Hills, 1L,
(US); Timothy W. Markison, Mesa, AZ
(US)

Assignee: Cleversafe, Inc., Chicago, IL. (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 259 days.

Appl. No.: 13/753,404

Filed: Jan. 29, 2013

Prior Publication Data
US 2013/0232184 Al Sep. 5, 2013

Related U.S. Application Data

Provisional application No. 61/605,869, filed on Mar.
2,2012.

Int. Cl1.

GO6F 17/30 (2006.01)

HO4L 29/08 (2006.01)

GO6F 9/50 (2006.01)

U.S. CL

CPC ... GO6F 17/30283 (2013.01); GO6F 9/5066

(2013.01); HO4L 29/08135 (2013.01)

Field of Classification Search
USPC e 709/201
See application file for complete search history.

computing device 380

DS module 350

determine redundancy
module 392

storage
redundancy 402

processing latency
information 404

setof slices 408
encode module 394

setof slices
408

first processing

(56) References Cited

U.S. PATENT DOCUMENTS

4,092,732 A 5/1978 Ouchi
5,454,101 A 9/1995 Mackay et al.
5485474 A 1/1996 Rabin
5,774,643 A 6/1998 Lubbers et al.
5,802,364 A 9/1998 Senator et al.
5,809,285 A 9/1998 Hilland
5,890,156 A 3/1999 Rekieta et al.
5,987,622 A 11/1999 Lo Verso et al.
5991414 A 11/1999 Garay et al.
6,012,159 A 1/2000 Fischer et al.
6,058,454 A 5/2000 Gerlach et al.
6,128,277 A 10/2000 Bruck et al.
(Continued)
OTHER PUBLICATIONS

Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

(Continued)

Primary Examiner — Backhean Tiv
(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

(57) ABSTRACT

A method begins by a dispersed storage (DS) processing
module determining data block storage redundancy among a
set of distributed storage and task (DST) execution units. The
method continues with the DS processing module dispersed
storage error encoding a data segment of data to produce a set
of encoded data slices, where a first encoded data slice of the
set of encoded data slices includes at least one redundant
encoded data block in common with a second encoded data
slice of the set of encoded data slices. The method continues
with the DS processing module assigning a first partial task
and a first encoded block processing order to a first DST
execution unit regarding processing the first encoded data
slice and assigning a second partial task and a second encoded
block processing order to a second DST execution unit
regarding processing the second encoded data slice.

20 Claims, 49 Drawing Sheets

DST EX unit set 382

DST EX unit 384

computing device 386
DS module 388

result 418

task execution module
400

order 412

assign tasks module
3%

|
|
|
|
|
|
|
|
| first partial task 410
[
|
1
|
|

second partial
task 414

second
processing
order 416

receive module 398

e —

DST unit 384 |

DST unit 364 |

US 9,195,684 B2

Page 2
(56) References Cited 2007/0214285 A1 9/2007 Auetal.
2007/0234110 Al 10/2007 Soran et al.
U.S. PATENT DOCUMENTS 2007/0283167 Al 12/2007 Venters, III et al.
2008/0115143 Al* 5/2008 Shimizuetal. 718/105
6,175,571 Bl 1/2001 Haddock et al. 2009/0094251 Al 4/2009 Gladwin et al.
6,192,472 Bl 2/2001 Garay et al. 2009/0094318 Al 4/2009 Gladwin et al.
6,256,688 Bl 7/2001 Suetaka et al. 2010/0023524 Al 1/2010 Gladwin et al.
6,272,658 Bl 8/2001 Steele et al. 2011/0055662 Al* 3/2011 Grubeetal. 714/763
6,301,604 Bl 10/2001 Nojima 2011/0066649 Al* 3/2011 Berlyant etal. 707/770
6,356,949 Bl 3/2002 Katsandres et al. 2011/0138396 Al* 6/2011 Chenetal. 718/105
6,366,995 Bl 4/2002 Vilkov et al. 2013/0198756 Al* 82013 Grubeetal. 718/104
6,374,336 Bl 4/2002 Peters et al. 2013/0232184 Al* 9/2013 Grubeetal. 709/201
6,415,373 Bl 7/2002 Peters et al. 2013/0232392 Al* 9/2013 Grubeetal. 714/766
6,418,539 Bl 7/2002 Walker
6,449,688 Bl 9/2002 Peters et al. OTHER PUBLICATIONS
N .
g:ggg:g?‘g Eé lggggg I;tzl;(; Ztt 21111'. """"""""""" 71415 Shamir; How to Share a Secret; Communications of the ACM; vol.
6,571,282 Bl 5/2003 Bowman-Amuah 22, No. 11; Nov. 1979; pp. 612-613.
6,609,223 Bl 8/2003 Wolfgang Rabin; Efficient Dispersal of Information for Security, Load Balanc-
6,718,361 Bl 4/2004 Basani et al. ing, and Fault Tolerance; Journal of the Association for Computer
6,760,808 B2 7/2004 Peters et al. Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.
6,785,768 B2 8/2004 Peters et al. Chung; An Automatic Data Segmentation Method for 3D Measured
6,785,783 B2 8/2004 Buckland Data Points; National Taiwan University; pp. 1-8; 1998.
6,826,711 B2 11/2004 Moulton et al. Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
g:ggg:ggg g} 3;3882 PDi(t)t(c)elljllg(/)w etal. gpserlli); fonference on File Storage Technologies; Dec. 13-16, 2005,
;:8%3:28; E% 3%882 &;%Fg;gg et al. Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
7,080,101 Bl 7/2006 Watson et al. and Information Science, University of Konstanz; Feb. 2007; 60 pgs.
7,103,824 B2 9/2006 Halford Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes and
7,103,915 B2 9/2006 Redlich et al. Matching Rules; IETF Network Working Group; RFC 4517, Jun.
7,111,115 B2 9/2006 Peters et al. 2006, pp. 1-50.
7,140,044 B2 11/2006 Redlich et al. Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
7,146,644 B2 12/2006 Redlich et al. tionalized String Preparation; IETF Network Working Group; RFC
7,171,493 B2 1/2007 Shu et al. 4518; Jun. 2006; pp. 1-14.
;%ié’ é gg g é ;;588; gﬁltlt)sllgt(zrl etal. Smith; Lightweight Directory Access Protocol (LDAP): Uniform
72725613 B2 9/2007 Sim et al. ggggu;c: Iff)lcsator, IETF Network Working Group; RFC 4516; Jun.
;:ggg:z&g g% ® }Sgg?g %ehlajan;lfzr;f :lt' al """"""" 709/224 Smith; Lightweight Directory Access Protocol (LDAP): String Rep-
8,965,956 B2* 2/2015 Palthepuetal. 709/203 resentation of Search Filters; IETF Network Working Group; RFC
2002/0062422 Al 5/2002 Butterworth et al. 4515; Jun. 2006; pp. 1-12.
2002/0166079 Al 11/2002 Ulrich et al. Zeilenga; Lightweight Directory Access Protocol (LDAP): Directory
2003/0018927 Al 1/2003 Gadir et al. Information Models; IETF Network Working Group; RFC 4512; Jun.
2003/0037261 Al 2/2003 Meffert et al. 2006; pp. 1-49.
2003/0065617 Al 4/2003 Watkins et al. Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
2003/0084020 Al 5/2003 Shu for User Applications; IETF Network Working Group; RFC 4519,
2004/0024963 Al 2/2004 Talagala etal. Jun. 2006; pp. 1-33.
2004/0098447 Al* 5/2004 Verbekeetal. 709/201 Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
2004/0122917 Al 6/2004 Menon et al. L . N :
5004/0215998 Al 10/2004 Buxton of al. tication Methods and Security Mechanisms; IETF Network Working
2004/0228493 Al 11/2004 Maeetal. Group; REC 4513; Jun. 2006; pp. 1-32. _
2005/0100022 Al 5/2005 Ramprashad Zeilenga; Lightweight Directory Access Protocol (LDAP): Technical
2005/0114594 Al 5/2005 Corbett et al. Specification Road Map; IETF Network Working Group; RFC 4510,
2005/0125593 Al 6/2005 Karpoff et al. Jun. 2006; pp. 1-8.
2005/0131993 Al 6/2005 Fatula, Jr. Zeilenga; Lightweight Directory Access Protocol (LDAP): String
2005/0132070 Al 6/2005 Redlich et al. Representation of Distinguished Names; IETF Network Working
2005/0144382 Al 6/2005 Schmisseur Group; REC 4514; Jun. 2006; pp. 1-15.
2005/0229069 Al 10/2005 Hassner Sermersheim; Lightweight Directory Access Protocol (LDAP): The
2006/0047907 Al 3/2006 Shiga et al. Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
2006/0136448 Al 6/2006 Cialini et al. 1-68.
%882;85;2282 ﬁ} 1(7);3882 Ei)tﬁar;}lllra Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
2007/0079081 Al 4/2007 Gladwin et al. IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
2007/0079082 Al 4/2007 Gladwin et al. Xin, et al.; Evaluation of Distributed Recovery in Large-Scale Stor-
2007/0079083 Al 4/2007 Gladwin et al. age Systems; 13th IEEE International Symposium on High Perfor-
2007/0088828 Al* 4/2007 Inampudietal. ... 709/226 mance Distributed Computing; Jun. 2004; pp. 172-181.
2007/0088970 Al 4/2007 Buxton et al.
2007/0174192 Al 7/2007 Gladwin et al. * cited by examiner

US 9,195,684 B2

Sheet 1 of 49

Nov. 24, 2015

U.S. Patent

01 wa)sAs Bunndwod painguisip

} Ol

81 nun

Buibeuew N1SQ

9z 8100

Bunnduwiod

€€ e0Blojul |-

ZZ eInpow (N1SQ) Homjau yse)
10/ sbeio)s penguisip

uojnosXs |Sq

g¢g Jun

| @31A9p J8sn

Y

T

¥Z yomau

_ 0z 1un Buissaooud
| Aubar 180
= _ 0z 8102
9 in _ Bunndwoo
uonnosxa |Sq [
) _)
IIIIIIIII 1 £F o0BlaUI
A

Y

0€ 2oBpigjul |

0z 8100
Bunndwoo

a¢ 1sanbal
sey 1o/ 0 elep

[
|

“ 0T 9Bl __

Z€ aoeuaUuI

Y

{ {

¥¢ s|npow
usIP 1Sa

9z 2102 Bunndwod

gF aun Buissaooid | SQ

7€ s0Ba)uI _

A

Y

7€ sinpou
uso 1sa

9z 2400 Bunndwod

| SdIASp Jasn

US 9,195,684 B2

9/ 8|npow ¥/ 8|npow Z. 8npow aoeuajul 0/ 8npowl 89 a|npow 99 g|npow
90BLRI NI S |deRul dH ysey SoBLIBJUI JloMjBU edelRul YEH |delul gSN

Sheet 2 of 49

Nov. 24, 2015

U.S. Patent

A A » » A A
«: \A | :«

_
_ I
| _
_ I
_ I
| 85 99BYalU! [Dd 7 soi |
_
_ I _\,_mm _
_ M Y _ |
_ gGsqonuod | | 09 eoeuaul ¢9 einpow I
_ ol -—> ol -—> soBlaUI _
80IA8p QI I
_ ;
_ I
_ Y “
| 5L 5 _ | o5emnpow |
_ fowsw urew |~ | s9giosu00 Alowaw [T Buissaoo.d _
_ 4 I
_ I
_ A 4 I
_ &G Jun Buissasoid _
_ sodelb 0apiA “
_
_ gz 9402 Bunndwod _
L o o |

US 9,195,684 B2

Sheet 3 of 49

Nov. 24, 2015

U.S. Patent

U# JIUN uonnosxs 1SQ

06 8[npoLu € g|npow

uonnasxs | 1P 183a
— — 3 8|npow
88 Alowau 98 48]10u00 mm_mmmwoa

u (shnsa. [ened

U# S30I[S panat)al

U yse) [ented

ug dnosb 29l|s

L#un
uonnosxs 1Sq

V4 (shinsau en]

L# S0I|S PaAsLI)el

L# Yse) [enJed

L# dnoub eo1is

Yy

¥Z yomsu

0l
s)insal jensed

$801S PaAslel

%6
syse) [ensed

—1—

Zg buisseooid
1S@ punoqul

|—Iv

96
sbuidnoib a21|s

/

|
|
|
|
|
|
L

l——

08 buisseooid
1Sd punogino

L —

€ sInpowl Jusio 18Q

—_—_— e e — - ———d

¥0T ynsal

C6 ejep

76 Jse)

6 Blep

US 9,195,684 B2

Sheet 4 of 49

Nov. 24, 2015

U.S. Patent

U# Jun
uonnosxa

1Sd

ug dnoJb aois

31T sinpow

A

A

J#uun
uonnNI9Xs

1Sd

A

Uz 3se)

|# %SE}

¥Z ylomsu

L# dnoub sols

86 syse) [enJed

|041U0D Y%SB)
panqguisip

<

0g Buissaooid | gg punogino

A
A

Ol 8npow

09T [oHuod

¥11 Jo109j98

03T [0u0d

[023U0D

Y

211 Buipoous

Buidnoib |

96 sbuidnoub so1is

—_———eme |, e == = — 4

1018 8Q

Z¢l uoniued eep

Jad s321|s papoous

0971 |04u0d

0l
Buiuoniued
ejep

-~

0cl

suonnied ejep

L e e e e T I R e e e e e e

76 s}

6 Elep

US 9,195,684 B2

Sheet 5 of 49

Nov. 24, 2015

U.S. Patent

SjuN | S aAnoadsal
0) syse) [ensed Buipuodsaiiod
pue sbuidno.b 801|s puss

|

Q)|

Syse)
[ensed sonpoid 03 Buiuonnied yse)
ay) uo paseq (s)yser sy uonnJed

|

[{o]

sbuidnoib 891 aonpoud
0) sJajoweled Buissadoid ay) yum
90UBpIOII. Ul BJep 8y} buissaooid

el A

sig)oweled Buisseooid elep

PUEB S)IUN | S 8Y) UO paseq
Buluonnied yse) sulIg)ep

el

s)iun | S JO Jequinu 8y} uo
paseq ejep ay} Jo sJejeweled
Buissesoid sulieep

0€1

(s)yse) ay) woddns 03 spun
1S 10 Jaquinu e sulwIg)ep

743

(s)yse) Buipuodsailiod
B PUE BJEP BAIR03)

9¢cl

US 9,195,684 B2

Sheet 6 of 49

Nov. 24, 2015

U.S. Patent

b

Juswbas

ocl
uonied ejep

9 'OId
8G] eep
papoous 9G] elep 7SI sjuswbes
padls PapooUs paIndas
6 - 6 6 m
uIsseo0ud ol 9%] Buipoous uIss820.d
funoes [Budys | Jous B funoss [Buisssooid
201|s Jad Juswbas
A A
Zar uoned 09} 104u00 il
ejep Jad sa01s — _ —
BJEP PAPOOUS 091 [04u00 | 3T inpow | 09) [0AUOO sjuswBbas ejep
|0JJu0D
091 |o5u00 09T |04u02

US 9,195,684 B2

Sheet 7 of 49

Nov. 24, 2015

U.S. Patent

g Juswibes ejep g juswbss elep ¥ usLwbes e1ep Z Juswibss ejep L7OH
P | | w0 [cvp | [a0 | oo | [ovp [eep || oo | zep | [9ep [sep | | wep | cep || zep | 1ep
oce | | 62p | 82 || 2z | 9ep | [sep [wep || szp | zep | [wep [oz | | ep [g || 2ip | oup
gio [wp [cp [[ap [up || oo | 6P g | 1p o | op | ep o |
/ swbas gep G JuswibBas elep ¢ Juswbas epep | Juswbas ejep
| sp [oo | evp [avp | 1o | ovp | 6cp | 8ep | zep | 9ep | sep | vep | eep | zep | 1ep |
| ocp | 620 | sep | 2zp | 9zp | sop | wep | szp | zep [wep [oz [ep [s | o | aip |
lsip [mp e[[wp[ow]| a0 [0 | o {0 [[ww|ep |2 | 10|

VD | wP | EVP | ZFP | LD
PP | 6EP | 8EP [[€P | 9EP
Gep | vEP | €ep | 2ep | 1EP
0Ep | 6¢P | 8P | Lep | 92P
Gep | P | €P | ZeP | 2P
Qcp | 6P | 8IP | ZILP | 9IP
SIP | wIP | €WP | 2P | WP
owp | 6ep 8p JAY op
gp 144 ep P \p

0zt voniued ejep

ZGT Siuawbas eep

vl __
Buisssoord |e— 091
JuswBes 104u00

0cr
uoniped ejep

US 9,195,684 B2

Sheet 8 of 49

Nov. 24, 2015

U.S. Patent

ROTE
| zes3 | 1es3 | cwpesa | ocpssa | sipgsa | 8#3uewBas o) saols lep papodus 0 1as
[]
®
[
[es3 | 1 eS3 | oewsep €50 | 1oR0p €50 | 98cp esq | C# eSS 10 S30IS EIEp paposus 0o
[zzsa | 1zsa [wescerzsa]eresiozsa | weepzsa | 2#iuewBes o) saols Elep papoous o e
_ Z 153 _ 183 _ zeslep 1sa _ 21891P 18d _ 281Ip 1Sd _ | # JuawBas 10} S30I[S BIBP PAPOIUS JO 185
091 gt | 9% buipoous 0or
onuos | Buoys [Jlous “ loquoo
9 1uswbas ejep 9 uswbes ejep ¥ uswbas ejep Z Juswbas ejep

Gyp R | E¥P e | P ovP | 6EpP 8Ep | LEP 9Ep | GEp vER | €EP cEP | 1EP
oep 6P | 82p LZp | 9p Gep | vep €¢p | ¢ap kep | 02p 610 | 8IP LIp | 9P
GLp pip | €IP cip [1P 0P | 6P 8p Y 9p ap 44 ep cp 3%

J Juswbas ejep G 1uswbhas ejep ¢ Juswbas ejep | Juswbas ejep

US 9,195,684 B2

Sheet 9 of 49

Nov. 24, 2015

U.S. Patent

| zes3 | | 1ss3 | swpesa | | oespesa | | swpesa | BE]E
o [] ® ® [J
[] [] [J [J [J
[] [] [[J [J
cesa		1es3	ocssepesa		1esozpesa		ovspesa
cesa		1S3	vesecpgsa		evesipzsa		wecpesa
zisa	[1s3	zesiepisa		zvsarpisa		esipisa	
G# 150 0) p# 150 0) £# 150 0) 2#1Sq 0) 141500}							
96 sbuidnoub sais							
TTARORETEN —							
Buidnoib <« 00hIohueo							
2esa	183	swpesa	oepssa	sipesa			
[J							
[]							
®							
Zesa	1esa	oessepcsa	1zmoee esa	95 esa	7T		
uonn.ed eyep Joj							
Zesa	1zs3 [vesccrzsa	etseipzsa	wecpzsq	SPUSPeROUe			
Zus3	1is3	zesiertusa	zimopisa	zeipisa			

US 9,195,684 B2

Sheet 10 of 49

Nov. 24, 2015

U.S. Patent

GIUNX31SA vIUN X3 1SA €IUNX3 LSA ¢WNX3L1Sa 1IN X3 1sa

(unyoeyep | (uonied (uoniped (unyoelep | (unuo eyep
snonBnuoo) | 1oy | elep 03) | 101z e1ep D7) | snonbnuoo) | snonBnuoo)
17X ¥ X G X X X
dnoib s01s dnosb 20118 dnoib 89118 dnoib 89118 dnoib a1
GINXILSA vIUNXI LSA €WUNX3 Lsd cWuN X3 1sa Lwnx3lsa

(junyoelep | (yunyoeep | (unyo ejep (uomped (uomped
snonbuod) [snonbBpuod) | snonbBpuod) | okz eyep H3) | 1ol | elep H3)
€e Z¢ I € G¢ Ve
dnoib a1 dnoib 018 dnoib 80118 dnoib ao118 dnoib a01s
GUUNXT LSO vUN X3 1Sa €IUNX3 1SA Z2WN X3 1Sa 1L wn x4 1sa
(uopiped (funyoelep | (unyoeep | (unyo eep (uopiped
Joj L eiep 03) | snonbBnuod) | snonbnuoca) | snonbnuoo) | ol z elep 03)
Ve 4 ¢ 4 G¢
dnoib 2018 dnoib 2018 dnoib 22115 dnoib 39118 dnoib 2015
GINXILSA vIUNXI LSA €WUNX3 LSd cWuN X3 1Sa Lwnx31sa
(uomped (uoniped (unyoelep | (qunyoeep | (Hunyo eep
lojzeepod) | o5, exepn3) | snonbyuoco) | snonbpuod) | snonbiuod)
Gl vl €l 1 Ll
dnoi6 a018 dnoi6 80118 dnoib 82118 dnoib 8918 dnoib a1
GUUN X3 LSA vWUN X3 1Sa €HUN X3 1SA ¢WuN X3 1Sa 1N x4 1sda

P S PV N |

O
O
~

uonouny Buidnos6
pue Buipoous

96 syse |enued

X#
uonnied ejep

CH
uonied elep

cH
uonnied ejep

(18s yunyo)

\#
uonied elep

i
76 ise)
0T 'DId
=B
Buiuoniued
6 ejep

US 9,195,684 B2

Sheet 11 of 49

Nov. 24, 2015

U.S. Patent

L4 }IUn uonnoaxe 1sQ

871
[0JU00
1sd

A 4

¥€ ajnpow
312 150

98 J9]]042U02

oLl
|0JU0D
ASe]

Y

A A

06 s|npow
UoLNIBX3 |(

86 (shse)
[ensed

<

-

¥ZT |01u09
Aowaw

»| 38 Alowsw

06 S99IIS

-

i ﬂ_:mmw

A

1078
001 s991s

201 synsai |enled >

>

ZZT Syse) |ented-gns pue Dz sbuidnoib eois-qns

891 %oeqpes) 1Sa

interface 169

L#Iun 41 Q Jo}
(shse) lenued

7 X
Elep w:o:@_ﬂcoo

| €ejep o3

¢ ¢eep 03

171 (lunyo)
ejep snonbnuoo

L#IUN X3
1SQ 1o} sdnoub 8018

x4 uopied

¢4 uoniyed

Z# uoniyed

|# uoniued

US 9,195,684 B2

Sheet 12 of 49

Nov. 24, 2015

U.S. Patent

J# Jun uonnosxe]S g

GIP | wIP | €IRP | CIP | LIP
0P | 6P 8p JAY op
ap VP ep ep P

| uonJed Jo syo0|q ejep
snonbiuod pajquiasse-al

$300]q BIep PajqIasse

-1 U0 (s)uonouny

yse) jensed wiopad

977 |04u0O yse)

| uonied
10} ysey enJed

98 J3||0J3u0d

Y

06 o|npow
uonnNJIXd
1d

| uonnued Jo | dnoib
Joj (s)ynsau jenJed

¥71 104u0d
Kowaw

88 Alowasw

Glp 8sd

v18ELP €SA

¢L8LLp €Sa

01136P €S0

88/p €SQ

98P €S0

¥8€P ¢Sa

¢81p 1Sa

| Buidnoib a2iis
| uonnJed Jo se0Is
EJEp Papoous

US 9,195,684 B2

Sheet 13 of 49

Nov. 24, 2015

U.S. Patent

Ug un
uonnJaxa

1Sd

€1 'Ol

u# (s)nsal jenJed

U# S80I[S paAsL)al

gun ———
uopnosxs | V# (Shinsal [ensed

15d

| # S9JI|S paAslllel

201 synsa. |eied

Z8 8uissadold 1S punoqul

8371 o|npow

»| 1013U00 ¥sE)

psINguIsip

_ bl

H

937 °|npow

0B [0Jju0d

08}
Buidnosb-ap

00}
S8I[S paAaLal

[0JJU0O

~

|0JJuU0d

281 buipoosp
1012 S

061 |04u0d

~ (s)nsau

ZZt uopyed
ejep Jad

$99I|S PAPOOUS

8l
Buiuonied
-op ejep

—t+—> Nl@ ejep

0cl
suoniued ejep

US 9,195,684 B2

Sheet 14 of 49

Nov. 24, 2015

U.S. Patent

7A]E

(shynsau
ay) 9onpo.d 0y buissadoid
S)iNsal 8y} YJIm 0UBPIOIE Ul
s)nsaJ [ered sy buissadoid

=1

)SE) 8y} U0 paseq
Buisseooid jnsal buluiwigiep

Q)|

> 1

synsal jened ay 0
Buipuodsa1100 yse) buirsu)el

©

> 1

Synsal |ented aAlg08l

US 9,195,684 B2

Sheet 15 of 49

Nov. 24, 2015

U.S. Patent

| 2e8s3 | 1es3 | swpesa [oepesa | cipesa |
° T
[]
| zesa | 1es3 | oewseresa | 1zsozeesa [gscpesa | =T
$89IIS JO S18S Ojul uoned
| 72s3 | 1zs3 | wescerzsa [eissipzsa | weepzsa | € 10} SS0IIS penatel
| zis3 | 1isa [zemertusa [zisoipTisa | zsiptisa |
081 J0108[8s o
Buidnoib-ap < 06l josuoo
001
S89I|S paAsuIal
| zesa | | vesa | | swesa | [ocpesa | | spesa |
[[] [] []
[[[] [
[[[] [
| zesa | | vesa | |[oesseresa| |[1esozeesa| | osspesa |
| uonnJed Joj
| zzsa | | vesa | |[escerzsa| [evssipzsa| | weepzsa |
| cws3 | | visa | [zemerisa| |zsawpisa| [zsipisa |
G#N3ILSAWOY PENILSQWOH E#NTISQWOY Z#NILSQWOY L#N3I 1S woy

US 9,195,684 B2

Sheet 16 of 49

Nov. 24, 2015

U.S. Patent

44}
uonnJed e Joj
$8I|S PaAsL}el

9T '5I4
3G ejep 9G7 elep 7CT Sjuswbas
PePOIUS Padl|S POPOIUS paInoas
281 Buipoosp Jous pesiedsip |
|
— 80c “
5 ¢0¢ ; Buissaooid oz !
uISseo0. 70C 90z Buipoasp funoes |
funoss soys [| Bupys-ep [| Jows " juowbss > mc_mm%ooa s
Jad asJanul aSIoAUl JusSLWIdas-ap !
067, 0302 m
) 4
06F 104ju0d | ggT enpow | 0BF 104U0D sjuswbes ejep uonied ejep
|0JJu0d
067 10u0d 0BT [043U0D

US 9,195,684 B2

Sheet 17 of 49

Nov. 24, 2015

U.S. Patent

JARDIE

9 Jswbhas rgep 9 Juswbas eep ¥ uswbas eyep Z Wswbas eep

414Y

b | EVP b | P o¥p | 6EP 8Ep | &P 9ep | GEp veER | €€p cep | 1ep

0€p

6cP | 8P LCP | 9P GeP | P €eh | ¢cp kP | 0P 6P | 8IP LIp | 9P

GIp

viP | €IP clp | P oLp | 6P 8p Lp 9p gp P ep [4Y IP

J Juswbas ejep ¢ Juswbas ejep ¢ Juswbas eep | Juswbss eyep

75 swawbas

peIndas
_ 90¢ Buipoaap | 4 -
0B [0JuU00 —»> 1015 < Bupys-ep | <+ 0BT [04U00
3G7 eyep
pspodus 3G] e1ep
PapPOJUa Padls
| zes3 | oeresa | cwpesa | 8#1UaWBos 10} S301S 40 513
o
®
[)
| zesa | 1esa | o9ewsepesa | £# JUSWBAS 10} SIS JO SIS
| vesecpzsa | 61esipzsa | weepzsa | C# 1swBos Jo} sa0ls 4o sjas
_ ZeRiep 18a _ £1891P 18a _ Z8LP 15d _ L# JuswBas 1o} S80S JO S)es

US 9,195,684 B2

Sheet 18 of 49

Nov. 24, 2015

U.S. Patent

Luoniued ejep
Syp | vvP | e | THP | P
ovP | 6¢p | 8Ep | Zep | 9¢p
Gep | vep | eep | zep | 1ep
ocp | 620 | Sep | Zzp | 9zp
GZp | vzp | gep | czp | 12p
0ZP | 610 | 8P | ZIP | 9IP
GIP [#iP | €I | 2P | WP
o | 6P | 8P | P | 9P
6P | v | ep | TP Ip

0ch
uonnJed elep

% —
Buissaooid |e— 06}
JuswBhas-sp (002

a5
sjualubeas ejep

EJEER IR

6cp | sep [zep | ocp | sep |

vep | eep | zep | ep |

| ocp | 6zp | s2p | zzp | 92 | sep |

yep | gzp | ezp | 1zp | ozp |

6 [s | 1ip | aip |

[sio [wp [ew | ap [up | op |

60 | oo [2o | o0 | o

w | e || p]

9 Juswbss elep

9 Juawbas ejep

{7 Juswbas ejep

Z Juswbas eep

7Y vrp | EvP | P ovh | 6EP 8cp | l¢ep 9ep | sep vep | €ep Zep | 1ep

ogp 6ch | 8Zp lep | 9ap Gep | e gep | cap lep | 02p 6LP | 8IP Lip | 9Ip

GlLp vip | €IP Zp | P oLp | 6p 8p lp ap ap 144 gp p P
/ Juswbss eep G Juswbas eep ¢ JuswbBas eep | JusLWbas eyep

US 9,195,684 B2

Sheet 19 of 49

Nov. 24, 2015

U.S. Patent

{unyo ejep (uomped (uoniped (unyoelep | (yunyo eyep
snonBnuoo) | Joj L elep 03) [Jorz erep23) | snonbpuod) | snonbnuod)
I X R G X R AR
dnoib 9018 dnoib so1is dnoJb ao1is dnoib so1s dnoub so1s
GIUN X3 1SA vWNX3 LSA €MNX3 LSA cWuNxX3 1SA 1N x3 1sa

(Gunyoejep | (yunyoelep | (unyo eep (uoniped (uoniyed
snonBnuoo) | snonbpuod) | snonBnuod) | Jojz eiep H3) | Jol | eyep 93)
€e¢ ¢ I € G¢ Ve
dnoib 20118 dnoib 20118 dnoub 2918 dnoub 20118 dnoib 20118
GIUN X3 1SA FWUN X3 1SA €WN X3 1SA CWun X3 1SA L wun x4 1Sda
(uopiped (unyoejep | (qunyoewrep | (unyo ejep (uoniyed
lopLeepn3) | snonbpuod) | snonbpuoo) | snonbpuod) | Josz erep 93)
Ve €¢ ¢ I ¢ 4
dnoub 20118 dnoib 20118 dnoub 2918 dnoib 30118 dnoib 20118
GIUN X3 1SA PN X3 1SA €MWNXFL1SA ¢WunN X3 1SA L wun x4 1Sda
(uopiped (uogiped Gunyoelep | (qunyoepep | (yunyo eep
lojzeepndy) | ioiLeep o) | snonbruoo) | snonbpuod) | snonbBruod)
Gl vl €l Cl bl
dnoib so1is dnoib so1is dnoub a91s dnoib so1is dnoub s21is
GuuN X3 1Sa vWNX3 1SA €WNX3 1SA ¢WNxX3 1SA 1wnx31sa

AUV VAR

cle
Buipoosp
pue
Buidnoib-ap

X
uoned elep

CH
uonued eep

CH
uonied ejep

(1os Yunyo)
V#
uonnJed ejep

6T "OId
vie
Buuonued
|®U
26 elep

US 9,195,684 B2

Sheet 20 of 49

Nov. 24, 2015

U.S. Patent

U#11Un UoNNoaxa | S{

-
'

06 8|npow € sinpow
uognaexs | g WsIP 1S
8¢ Aowsw 9g Ja]|0nu02
||||||| [-—--p-————m———m—---
U# S80I|S panaL)al
°
°
°
U# $80I|
|#

Jlun uonnaexe 1 Sd

A

| # S80I|S PaAaL)al

3015

¥z Jomsu

00T SS91|S paAsial

29 Buissaooud

-

AN

1SQ@ punoqut

0% buisssooud

9]¢ S8218

€ aInpow jusl | Sa

> ——

C6 Bep

1sgpunogino [T CBEIED

US 9,195,684 B2

Sheet 21 of 49

Nov. 24, 2015

U.S. Patent

U Jun
X3 18q

L#3un
X3 18d

S90S
JO Uz seyd

08 8uissasoud 1S punoqino

81} 8|npow
[013U02 YSE}
psinguisip

:

091 |104u0d

o1 8|npow
|0u0d

Oce ssedAq

091

_ozcooh

V11 1010918
buidnoib |

$39I|S
10 L4 Jeyid

1
I
I
I
I
I
I
I
1
1
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[

Z11 Buipoous
Joue sq

9re
S90S JO SJe||id

4
S30I|S P3POoUS

i

Buiuonnsed

elep

C6 ejep

US 9,195,684 B2

Sheet 22 of 49

Nov. 24, 2015

U.S. Patent

[44D]E
G X ¥ X X 7 X | X X# Juswbas ejep
)
[]
°
| s¢ | ve | ¢ | 22 | v | | z#jvewbes epep |
| <« [v | a0 | @ | v | | 1#wswBes exep |
1244
Buiols 9
Buipooua
T e e K
! Z11 Buipoous Jous pasiadsip i
I — I
— ! 051 Vad! — !
8l¢ “ Buissa001d T ol Buisssooid crl _
uswbes ejep 1od «——| . - AP b < . b _
| 1ep _ funoes [buoys [uIpoaud funoes [uissaooid
$99I|S PapooUs ! 201fs Jad lous JusWBas JuswBes
m o7 (oxuoo?t
Gl ¢6 Ejep
09T 0ju0D g7 ainpow |37 [01ucd sjuswbes eyep
— |0Ju0d
097 |0qu0d 0971 [01u00

US 9,195,684 B2

Sheet 23 of 49

Nov. 24, 2015

U.S. Patent

x Bas Jo x Bas Jo x Bas Jo x Bas Jo x Bas Jo
sois gued | sousyued | soysgueqd | eouszepd | eois | Jepid
[
®
[
¢ 69s Jo ¢ 69s Jo ¢ 69s Jo ¢ 69s Jo ¢ 69s Jo
sois gued | sousyued | soysgueqd | eouszepd | eois | Jepid
z bes Jo z bes Jo z bes Jo z bes Jo z bes Jo
sois gued | sousyued | soysgueqd | eouszepd | eois | Jepid
| Bas Jo | Bas Jo | Bas Jo | Bas Jo | Bas Jo
sois gued | sousyued | soysgueqd | eouszepd | eois | Jepid

GIUN X3 1SA vIUN X3 1SA €3N X3 1Sd

¢NUN X3 1Sa 13N X3 1Sd

1744
Buidnoib Jejid g
Bumys ‘buipoous

¢6 Ejep

US 9,195,684 B2

Sheet 24 of 49

Nov. 24, 2015

U.S. Patent

L# Jun uonndexa | S

Z 2402 Supndwod

¥€ a|npow
wsld 1Sd

06 @|hpow
uonndaxa 1Q

gg J9]|0)u0d

¥11 10quod
fowaw

38 Alowaw

0lC
S80l|8

<l
-«

00}
90118

[
|

interface 169

o e e e e e T I e e

x Bas Jo
39lfs | Jeyjid

¢ bss]0
a1s | Jeyd

z bss o
39lfs | Jeyjid

| Bas jo
89Ils | Jeyiid

s90Is 14 Jeyd

US 9,195,684 B2

Sheet 25 of 49

Nov. 24, 2015

U.S. Patent

Z8 Suisseo0ud 15Q punoqui

! |
! 1
! |
! 1
“ 881 sinpow “
! |01U02 YSE) |
Ugt Jun 1 |
UoRNIaXa “ panquisip “
18d 1 A |
! Y I
! |
! __
I 381 sinpouw |
“ 067 I0u0d [0u00 97z ssedAq !
! |
U# S0IIS panaLiel | —_ 0
061 1043u0d

* | Y ¥ Y _
] ToT 1

° I — =T ¥ol
5 081 . 797 buipooasp Buonyed “
I uidnos6-ap 1018 80 _
| -9p elep _
] — [

L#un | _ 8l¢ —>
uonnIaXs “ 001 JuswBss eyep Jod “ 6 Eep

18a L# S90IIS paAalal ! SO0JIS paasLiel S801IS Papooud !
! “
! 1

US 9,195,684 B2

Sheet 26 of 49

Nov. 24, 2015

U.S. Patent

9¢ 'OId
c X ¥ X X 7 X L 7X X# uswbas ejep
e
®
®
_ _ _ _ _ C6 Elep
| sz | ve | ¢ | z2 | vz | | z#wswBes exep |
_ 034
| sv | v [v | 20 | vy] | 1tiuewbeselep | JuswBes-op
T4
Buipoasp
pUB 81|s-op
T T T TS TS TS T TS TS mmmmmmmmmees ot "
! 28] Buipoosp Jous pasiadsip |
|
“ 20C b o d
—_— I —— uISS8001 —
8le _ Buisseooud 707 90¢ Ajunoss ole
Juswbes ejep Jod —— Aunoas > Buioils-op »{ Buipoosp > Ewsmmm »| Buisseooid
$30I[S PaPOUD m S01IS SIOAU| ~ Jous s8I0 Juswbas-ap
— A
A 067 10500
e _ — 478
061 101u0d | 93T ainpow | 061 [0AUGD sjusLubas ejep
— [0JU0d
061 104Ju02 061 |0qu02

US 9,195,684 B2

Sheet 27 of 49

Nov. 24, 2015

U.S. Patent

L2790 ZZATPOW NIST
||||||||||| |mmm e e e e
Ug JIun “ ! Wi Jun “ m B4 1un “ m o4 JUN “ m L#Iun
uonna8xs 18a m | UORNo3X3 180 m I UORNO3X3 180 m - UORNo3X3 8@ m I U0ANo3% 180
1 | 1 I 1 I 1 I
peompow | ! eee | [fEonpow |! eee [[fEonpow | ! eee || fEonpow | ! eee | [Esnpow
wap 1sa | ! L[weplsa |! V[weplsa | ! i | weplsa |! || weIp Lsa
— | 1 — | | — | | — | |
98 Jaljonuoo | ! | | 98 Jel10nu00 ! | | 98 ssl10mu00 ! | | 98 J8l10u00 ! | | 98 4a1100u00
] ! | ! | 1 | 1
06 ejnpow | ! ''| 08enpow | ! 1| 08enpow | I'| 08enpow | I | 08 enpow
uonnosxs 1(m ! | uognosxa 1@ m 1| uognosxa 1 m I [uopnosxa 1@ m I [uopnosxs | g
| ! | ! | ! | !
| | _ 1 1 _ _ 1 1 1
! _ Y BP0 YSB) PapooUs S _ m “
1 | [T] T | 1
| _ | “ A | “
o “ “ o T
! | ! _ ! _ | ¢opooysepepooua sq |
“ _ ! “ ! " [“
! “ ! “ ' | zepooysepepooussa | |
| | 1 ! 1 T 1 !
U BJep pepoous SQ _ m _ | 8p02 %Sk} Papoaus S(_
T e T o
! _ ! o | ! | ! |
i ¢ e1ep Papoaus S _ I i I
i “ _ “ [_ Z ©1Ep PApoous §(_
| | I I I 1
! m ! m _ | BJEP PaPOUS S _
5% i | 5 | ! 5 | ! 5% | ! 5%
Aiowaw _ | fioLaw | ! Aiowaw | I Aiowaw | I Aiowsaw
| | | ! | !
I 1 1 1

US 9,195,684 B2

Sheet 28 of 49

Nov. 24, 2015

U.S. Patent

-r—-e—_———m——_——_——_——_——_——_—_—_——_——_——_——_——_——_——_——_——_—————_——_———————————

U BJBp Papooua Jous S

¢ BJep Pepoaus Jous g

Z ©1ep Papooud Jous S

| BJEp Papodus Jous SQ

2z ainpow (NL1SQ) yJomjau xyse; ¢ abeio)s panquisip

_) 8P0D ¥SE)} PAPOIUS 10418 S _

_ Z 9p09 YSE)} PIPOIUS JOLI3 S _

_ | P09 ¥SB) PAPOIUS JOUS S _

e —— - e
ooy | T Tt | o
Jnss nedojle 1Sd nedxoje 1Sd Jnsal
25z 8inpow ZS¢ 8inpow
uonnquisip yse) uonnqiisip yse)
A A A A
ace ove g¢ce ove _
70T SHnsal aleyep | qlvse) aleep |[qiysey | ¥OL sunsal
v pojogIes | pe1ases pejos|es [pejosies y
¢# 9inpow T# 8npow
Juelp 1sd Juelpp 1S4
al v_.w_.mmu_u dl C.Wumbu al 9 vse; - al @MHNU”
Ql 4581 - QI 2 53ep
at xmm”_ - al Smb - ©®Nw®_uoo v_wmu u_o ”_w__ at mgm_u -
9€£Cs8P00 skl Jo 18| ¥€ZeIRP JO 18| yECeIep Jo 1S

US 9,195,684 B2

Sheet 29 of 49

Nov. 24, 2015

U.S. Patent

ZvZ uonewJojul
uonedoje L Sd

XX

K>XX>N

08z
seniiqeded
X310

v
IY Y
¢
L€ €
(¥4 4
el
A
[S
8 | 3T
pow Hun
LER el
1d 1sd

0FC QI %sel 8€Z al eep —_—
6¢ 9I4

pald9|es pPajoo|es hlv_ yeeL

Z-1vseL
LS. | yvseL

g eseL
%2 eInpow L gYseL | ¢seL
uonnguisip ysey ¢ iseL ¢ IseL

L1 yseL

¢ 1seL
LRy | xse]
8¢ (4
> ¥Serqns | 358

9tz dejy

)SEL-gNS <> 3Se|
UD1S U 93S9L/0L | ZX uippy | ZX u UD1SU 9IS S | D8 udppy | 0F u
€01S€93ISGE | AAEIPRY | AA ¢ €015°€93S 9101 | ad cippy | ad g
20182 93SGIE | AX TIPRY | AX Z 2701S'793S eS| avziepy | av Z
170181 793SGie | XX LIPRY | XX | b 170181 793SG/E | W LIPRY | W | L
0z | 89¢ 29¢ | 09¢
/¢ SISjoWEIR] Zlcom | dzs | al 99z SIsjeleIed vocoNl | 8zs | @l
sa 1ppy ¥seL | yser sSa 1ppY geq | ereg

2GZ So|Npow uonnasxs |

0GZ uonewojul abeios yse)

B¢ uonewiojul abeiois ejep

US 9,195,684 B2

Sheet 30 of 49

Nov. 24, 2015

U.S. Patent

0¢ o g6z spiom |
anbn jo 18y 9]¢ spiom anbiun
96¢ QLCMO) MSE)
paje[sues
Aposlioo —
FIE suonejsues
SPIOM JO IS1 1081102
¥6C OFE slous (| 0] aredwod
paje[suey A
Apdaliooul
SpIOM JO 18]
CIE sio® 782 e1ep Z8¢ e1ep —
_ uonejsues pajejsuel;-al mu pajejsues AIU ¢6 elep
CBC Spiom pJOM-Uou 80€ 39eq 90¢ —
-uou 0y anp 297 (soseiyd) aje|suey) ale|suel
SJI0MID JO 15| spiom pajejsuen | <
ouioads 1s)| $0¢E seselyd Jopg spiom paje|suel; o1j10ads
06¢ Spiom
-Uou Jo Jsi| A —
Z0¢ (Areuonoip e uijou “6'a) spiom-uou
09z (saseiyd)
spiom o110ads 181 A p—
00¢ saseayd 109 spiom a1103ds
(Z 1 pue G | Ja)e paJapI0) SUCNE(SURI) 1981103 SUIISIBP - /| YSE)
soselyd 10/ spiom ou0ads pull - 7€ yse) (171 pue G| »isej Ja)ie PRISPI0) S10.I8 UOHBISUEI) PIOM-UOU BUILLISISP - 9 | 4SE]
sjejsuel - | ¢ ysey[K (-1 ySB] Jaye pPaIapIo) S1043 | 0) 21edwod - G | YSE)
$3SEIC 1079 SPIOM PIJE[SUET JadS Pull - € S8l (€1 ¥sey Jaye paiepio) Yoeq Sle|Sues - | 3Se)

(paisplo-uou) sjejsuen - €| JSe
(paiaplo-uou) spJom anbiun AJjuspl - Z~ | 4SE)
(psJaplo-uou) spiom-uou Alnusp! - | | ysel[X) SISA[BUe Uonejsuen - | ¥Ser

SoSeIyd 10,5 SPIOM oi0ads pull - ¢ yseL

US 9,195,684 B2

Sheet 31 of 49

Nov. 24, 2015

U.S. Patent

1€ Ol

P T A T o A T o o TR o
I S A R = S . S A T A T < N S R
| Jlun uonndsxs ! 1 JIuN UOKNJ3X® 1 | JIUN UOKNJBXS 1 | JIUN UOKNISXS 1 | JIUN UOHNIBXS 1 | JIUN UORNISXS 1 | JIUN UOKNISXD
| 1sa ! 1sd 4! 1sQ ul usa il 1sd wf 4sa 1! 1sd

— — — — | — | — | —
| FEompow |! | $Eamnpow || FEeimpow |! | FEamnpow || FEempow 1| $Esmnpow |1 | FE epnpow
|| WP 1SA |1 | eI LSA |1 4| WP LS |1 | WRIOLSA |1 4| WP LISA |1 | RO LSA |1 4] WAIP 1SA
I I I I I I I
| I | I | I | I I I
' 1 Jojjouod : | Ja]|onu0o : G J9]|0Au0D : b 19]|01U0D “m € 19]|04)U0D “m Z 19]|01u00 “m | Jajjonuoo
I I I I I I I
'l 171 8npow m 1 171 anpow : |G gnpow “ | 1 ¥ ainpow : ¢ gnpow “ 1| 172 anpow : |} 8npow
| uvopnoexa |y 1| uognoaxe “ Il uonnosxe “ I uonnoexs “ Il uonnosxe “ I uonnoexs “ Il uonnosxe
! 10 |l 10 || 10 |l 10 || 10 |l 10 || 10
I Iy Iy Iy Iy Iy Iy
i ¥ X]] || 1]
! | ! | ! ¢ 9P0J YSB) Papodus S
“ 2 8p02 {SE) Papoous S il | |
! 7] [1] [] L] L
! || || | 8P0D Y{SE} PAPOSUS S
! : b [[[1
_ » » Z €Jep POPOOUD S
| . | | | | | I | I | I | I
m 89 Alowaw “m 89 Alowaw “m 89 Alowaw “m 89 Alowaw “m 89 Alowaw ““ 89 Alowaw ““ 89 Alowaw
| ! | ! | ! | ! | ! “ ! “

US 9,195,684 B2

Sheet 32 of 49

Nov. 24, 2015

U.S. Patent

¢¢

I €

Ll

91

Gl

vl

€1l

¢

L}

723
51

L &M ___.
-} ‘9'Gspun1sa | Syun]sa guunisa |[zed | 7s8TvzeT Tl Zg-1d-1 ¢l | ¢ Jaye
(€) se
-1y g1y 8sn awes) auou
¥~} ‘2 spun 1SQ Lyun | S Lyun 18d ad L2819 G L € 7Z-123 duou
ZG14-1 61y Gl
L-¢ sjun 1S3 gun |Sd euun)sa |18 | 268V TE€TCTL | 8ZCld-) ¢l 97 | Joye
ZG14-1 61y Gl
g-¢ shun 1Sd ¢iun |Sd guunisa [91d | LS8 P e T L | BZ -ld-)L LY 9} | Joye
7Z7-12
G-l spun 18d L un 8@ | Jun 1Sd G-l LGB L P L EL TV L RZ ¢-1d- 1 ¥Id v | Joye
218V L1V9TeT Z¢-14-G ¢y
L-€ Sjun 18d gun 1sa epunisa (v Ve v e el Feld-1 el e 1 Joye
AL N A WA Ar At 77-62¢
9-¢ sjun 1sd ¢un 1sd cuun 1sd €l LGB L P L EL TV L ve¢-l ¢ auou
G- Sjun 1SQ | Jun 1Sd Lwunisa [eid | Ve v et el ve-le auou
G-1 Siun 1s@ | Jun 1S lWun 1Sa SRR AT EAN 77-12 auou
9¢ce
OvE ebeiors gcc obelors Buisssooid | ¥EE gz¢
jinsarejepewdaul | ped yojeios | Jnssiwieul | SWeN | ZEE spow X3 1 1018S 0cc uoned elep | Buwepio ysey
¥Z< OJUI JNSal ajelpatuiaul Z¢e OUI UONNJSXa YSE)

UONEedIPUI UOISIBAUC) Jewio) ‘uonn/ed yoes Joj ojul Ippy ‘suoniued Jo 'oN ‘| elep[F] :0z¢ ojul uoniued eyep

US 9,195,684 B2

Sheet 33 of 49

Nov. 24, 2015

result 1_2 (list of unique words

U.S. Patent

Femm oo , G¢ Ol Fm oo ,
v [o1 06 ! _ 201 06 |
1 |
- sjnsai spowx3y | ! — s)nsau | spowx3 |
RN |eed Au 1qJoiss ﬂv A \co_ﬁ_tma RW [ened AU 1q 0388 ﬂv Z uonued
I ® . . | € Lnsal I ® ° | ElEP
“ e L4 1 “ [[|
< leF ﬁmw ! Y o | Nm|_ o.o ! Y
= | uoniped = z uoniyed AU
= siinse) Spow X3 | - 3 s)nsal 1| spow X3 -
m Awmu eped AH_ 1010788 M““H € Lnsal Au 8 Au_u Ened AU 110198 A“u elep
m | | 1 uoniped | ' |} uonised
zor 06 ¢ 1 nsa. _ 701 06 ejep
S @ synsal Au spow X3 _“b — ﬂv synsai AW spow ¥3J ﬂ\w
| |ewped 1040388 | ! lened 1aoes |
| Dpeq ojisuen) y Lase ! (GJelsUEx) €7} ¥sE) “
IIIIIIIIIIIIIIIIIIII 1] P
T [%] | ve Ol T T ===2-1 N
I o]
sjnsau spow X3 | ! — s)nsal spowx3 | !
20| e Au 1qso1es |5 | zuomed 3 Pl a Lajops |5 |z uomed
_ ® ° | ejep s| ® ° | ejep
! ° ° i 4 ° ° i
| leF oom ! Y o § | leF oo@ ! Y
Z uonnJed AH_ @ S z uoped | /4
sjnsal Spow X9 = 5 synsal U spow X3 b _
A“u leped <« 104015 A“uu o Bl T Aﬂ lewed < 101018 A_H_ Gep
| |
m || | uonied = “ |y uoned
2or 06 Ejep 2| — 701 06 Bjep
& sjnsai AH_ spow X3 ,W\N — | @ s)nsai AH_ spow X3 ﬂw
lenued 1040388 | eped | | Lalowes | |
1 1
} }

(Spiomanbiun a|) | ise) TSpIom-uou) || 4se)

data 92

data 92

US 9,195,684 B2

result 1_7 (list of correctly translated
words)

Sheet 34 of 49

Nov. 24, 2015

result 1_6 (list of errors due to non-
words)

U.S. Patent

| | result 1_4 (retranslated data) |

data 92

ey B XL RTE
20t 6 | |2 =
Au synsal AH_ Spow X3 A__H_ o
lened 1goyes |) | zuonmed 25
o . to| g L insal AU ~ 2
. P s
® c
I ™S m =
“ bt Skl okl _
— 1| 1 uoned “ 207 06 |1 |2 uomed
201 06 1|z} ynsa. 3 Au synsal AH_ spow X3 ¥} }Insa)
s)Nsay AH_ spow X3 AH_ AH_ s eryed 1@Joyes
leed 1dso.es [1 [} uopped S | “ z CM_MES
(Suoye|suel) 10a102) /|, yse; | | G LAnsal W m | ep
IIIIIIIIIIIIIIIIIII - nﬁu & “ “ ” “ [
Sg| o ° ! s
£ o I
=" T T TT T ! [z vopged 5% i ;
_] 06 1 G L ynsa) = : __ ! | 1 uonie
0 0l 06 1|y nsal
Au sinser [7| spow x3 Au —— 2 Au v | ¢ souxa yLl
N [enJed 1alops | uonh AH_ =
! o o b7 ansel 3 ! [enJed 1aj018s | 1 |} uopped
| . < “ o ! (a1edwod) G| yse) L“ ejep
I I ®] ~—---—----—-—=--=-=--=---
“ - s
! I } uonied 238
| Nolv 06 | m\r JInsal ~ S
AU s)nsal AH_ SPOW X3 Au AH_ m_w
[enJed 1djoes | 1 [uoned 2 <
(SpJom-uou 0} anp siows) g | ysey ;| b b HNSa -
1

US 9,195,684 B2

Sheet 35 of 49

Nov. 24, 2015

| result 3 (specific translated words/phrases) |

U.S. Patent

data 92

= —
S 38 — k= B
— = —_ [72) o n
6€ o1 3 E 2 5 - £
Ew % 3 z = 7]
8L S — o = @© 8
=) E W z = S 24
T S = 2% > s s 8 g
s)nsai B9 5 5 5 £3
SRR HEAEHEAE REEAEH E
72} = =
..11_ m 6_ = 2_ H_ m. (wu\
= = - = — o~
g E E 3 = 5
o Qo — W m
¥¥Z uonewJoul ynsel
8¢ ol L€ OId
T2 | [%] T | [%] |
|
| 1] | |
sjnsal Spow X9 | 1 — = synsal spowxg | !
Rw lensed A__u 1010388 a z uonped m Rw Eied Au 1010198 ﬂv z uoniped
! ® ° “ ¢ 13Insal = I ®) | Blep
| ° ° ! s < ° !
| () o | (X X o k<) | () o ! eee
v [zor 06 _ - S| 701 06
G | amsar | <l seowna | o £ QIZ| |e] ¢l amsa <ol sowxa | (o 2o
| ened tapes | LM €l T | reme 1ajomes | 1ep
)
m ! | | uonned Z ! | 1 uoniped
Z0r 06 €} nsal =| 701 06 Bjep
ﬂ.v sinsas | 7| spow X3 ﬂ — 2 @ sinsar | 7| spow x3 m_w
| lemed 1ajops | | v jeed 1apps |
“ (seseiyd “ | (SaSema7spiom oyoeds) 7 ise} |
| spiomoyosds pajeisuen) gy ;00 TTTTTTmTmooooooooes !

US 9,195,684 B2

Sheet 36 of 49

Nov. 24, 2015

U.S. Patent

C[1AD]E]
g3un X3 18q Aﬂ < gva | 8¢9 | 829 | §714 ue fwe | e [Ye | e [gmo
LWNX31S0 € _ <7 Iva | 2eq | Lz | L e [uye | 6e| e |ee| smo
9Iunx318a Aﬂ m_ ka| ova | 9¢q | 929 | 9714 pe | oe | qe|ee| z [gmo
6N X3 180 < m $ 0z4 619 814 119 119 L{oJo]lo]| o[smo
yIUNX3 180 A‘ﬂ m A”Q| 919 Glq 14 glq €19 oft]olo|o]f ymo
EUUN X3 150 <€ = <1 29 11g 0lq 60 [==| 69 [xlO]JO] L |O] O] emu
Zwnx31sa 89 19 99 gq gq ofoJo|]| o[zmo
L lunx31Sa APANH ’ 9 £q Z2q 19 19 ofojJolo| L[| 1mo
n jd —
€100 [€09 | ZIod | 1100 96¢
— uondsjes 7GE xujew Jojelsuab
8GT Xu1ew 891Is 19junyd ejep
ZG¢ 10)98]9S uWnjoo > 9
w““”% e n M“ w“ MM o\| 0001q [eee | 869 2964 1 1860 | NIesyunyo
¢ junyo zZiq 11q 0i9 69 oJ. H
Zunyo 89 19 9q 59 009 |eee| €14 Z¥a 19 g1esyunyo
L yunyo +a £q Zq 19 ovq |eee| €2q zza 1Z4 ¢1esunyd
ploo | g0 | zpo | |10 029 |eee €q Zq 1q | 38SUNYd
ZGC Xl1ew eiep jasyuny? A/ 0G¢ elep

US 9,195,684 B2

Sheet 37 of 49

Nov. 24, 2015

U.S. Patent

a0v 'OId

¢ Jun uonndsxs | Sd

06 3|NpPoW uopNaaxa 1q

} cmo_) ¢ vmo_)

A

€ PEOI] ¥ PEO)

A

| Jun uonnosxs 1Sq

06 SINPOW UORNIEXS | g

14 Umo_)

A

¢ peof | peoy

A

US 9,195,684 B2

Sheet 38 of 49

Nov. 24, 2015

U.S. Patent

palais si Buidnoib
90I|S YoBa 2Ioym S)eaipul 0) Alopalip e sjepdn

O
(39!

I A

nun X3 157 Jeisef ay) 0] jun X3
1S Jamojs ey ol syse) [enied pajenosse
puUe S30I[S 8J0L J0 auo ay) Buliajsuen aeyjoe)

A

<
(a2

1

Jun X3 1Sd
J91Se) B 0] JaIsuel) Joj Jied ay) 10 1un X3 1SQ
JMOIS B]2 PaI0)S S80I[S 210U 0 BUO 108[8S

e A

[sA8] UonNoaxa yse) [enJed s|geioagun
ue yym Jied uonnasxs JIun X3 | S 10918p

o A

Buwapio uonnoexe
UJIM S0UBPI0ID. Ul SHUN X3 1 ST 0] SYSE)
[ensed Buipuodsanoo pue sbuidnoib s2is puas

59 A

1se| passaooid
ale sbuidnosB a01|s om) usamieq Alepunog
B JBSU S39I[S 1By} Uons sjun X3 1S Jo sied
Joj Buuaplo uonnaaxs yse) [ented suiwisiep

99 A

$yse) [ensed aonpoid 03 Buluonnied
Sk} 8y} uo paseq (s)yse) sy uoned

O

9 A

sBuidnosb
801|s 9onpoud 0] sisreweled Buisssooud
QU U)im S2UBPIODE Ul Blep By} Ssa0id

<t
—

Vel A

siajawesed Buissaooid sy pue syun X3
150 8y} uo paseq Buuonnied yse) auiwiaiep

2 A

SJun X3 1 S 4O Jequinu e uo paseq
ejep au Jo sisjoweled Buisseaoid aulwis)ep

(=]

3 A

Slun X3 18Q 8y} Jo yoes
Uim pajeioosse [9A9] Ajljigeded e uo paseq
(s)ysey ayy Jof SjuN X3 1S 8J0W 10 8UO 198]88

<
3/

9 A

(s)ysey Buipuodsaliod e pue ejep aAIgd3l

(Lo

o1 A

US 9,195,684 B2

Sheet 39 of 49

Nov. 24, 2015

U.S. Patent

Z JIUN uopnoaxs 18q

06 &|npow uonnosxas | q

:umo_) Nvmo_) mvmo_) vvmo_) mvmo_)

[sa [s | o9 [sa | g
85 Aowsw

T nuogose ;sg |
06 S|NPOLU UONNISXs |
A

momo_, wvmo_) mvmo_) Nomo_) ano_)

[sa [va | e [2a | 19
29 Aows

US 9,195,684 B2

Sheet 40 of 49

Nov. 24, 2015

U.S. Patent

v8e Iun 1Sd

8¢ Jun 1S «———

91 leplo
Buissaooid
puo2as

717 458y
[elied puooss

giv Ol

96¢

86C 8|NpOoLU DAIBJ8) |«&

Y

Z1¥ Jepio
Buissaooud jsiiy

01 yse) [enJed 1siy

a|npow syse) ubisse

307
$80I[S J0 J8s

00¥
B|NPOW UOINDBXS YSE)

TR H_smo_&

88¢ anpow s

80% seols J019S

Z0F Aouepunpai
abelas

Z6C anpoLu

98¢ 01n8p Bungndwioo

¥8E Nun X3 1SQ

Z8€19s 1un X3 1Sd

$0¥ uonewlojul
Kouse| Buissano.d

fouepunpal sulwIg1ep

06€ alnpow SQ

08¢ 991nep Bunndwiod

907
ejep

_
_
_
_
_
_
_
¥6€ sinpow spoous fe———
_
_
_
_
_
_
_
_

US 9,195,684 B2

Sheet 41 of 49

Nov. 24, 2015

U.S. Patent

(JEADE

20I[S BJep Papoous sy}
Buisseooid Jo Aousje| ay) 0) 9|qeIoAR) SI 82I|S
BJBp POpodus Jayio ay) Buissadoid Jo Adusre)
U} UBYM 20|q BIJEP PSPOIUS JUBPUNPSI BUO

1Ses| Je 8y} uo yse} [ented ayj Jo uonnaaxs diys

ey A

901IS BJEp Papoous
ay buissaooid Jo Aoug)e| 0] 8jqrIOARIUN
S 921|S BJep papoous Jayjoue Buissedoid
10 Adus)e| usym %00|q BJep PSPOIUS JuBpUNpPSI
8U0 1SB3) 1B U0 YSe) [enied ay a)ndexs

$3I|S BJEP POPO2US JO 185 BU) JO BIIIS BIEpP
PapO2Us puodas e buissaooid Buipiebal syun
uoinoaxa | S JO 18S 8y JO IUN uonndsxe | S(Q
pU0I3s e 0) Japio Buissaooid ¥00|q pepoous
pU02aS € pue yse} [enJed puodss e ubisse

24 A

4% A

JapJo Buissssoid ¥o0iq
PaPOOUS B} Y)IM S8OUBPIOJO. Ul 89I|S BJep
PSPOOUS BU) JO SYJ0|] BIEP PSPOOUS UO YSE)
[elied paubisse ay) JO UONNJaXS SOUSLULLIOD

S90I|S BJEP PAPOOUS JO
1S 8U)) JO J9I|S EJEP PBPOIUB }sil e Buissaooid
Buipsebal Syun uonnoaxe | S 10 18S 8y JO Jun
uonnoaxs | S sy e 0y Jepio Buissaooid 30|
PapooUs 111} B pue yse) |enJed jsiy e ubisse

vy A

0ev A

80I[S ejep papoous ue Buissaooid
Buipsebal sapio Buissadoid ¥20|q papodus
ue pue ysej [ensed paubisse ue sAl8oa)

$90I|S EJEP
PapooUs JO 18s e aonpoud 0} ejep Jo Juswbas

glep e ‘Aouepunpal abelia)s ¥00|q e1ep ayy yim

20UBpIod2. Ul ‘apoous Jols abeioys pasiadsip

44 A

sjun uonpnasxs | §(Jo Jes e buowe
Aouepunpai a6e103S %90|q BIEp SUILISISP

T A

@ A

US 9,195,684 B2

Sheet 42 of 49

Nov. 24, 2015

U.S. Patent

€ JIun uopnoexs 18q

06 3INPOW UoNNI3Xa |

| vmo_) 4 vmo_)

A

g peor| ¢ peoj

A

| 210 | ug

| o |

64

88 Aowsw

¢ Jlun uonnasxe | Sd

06 9npow uonnasxe | Jd

7

A A

gz peol’| d| peol’| | peq|

Y/Z PEQ]

A

EN

19 | 9

o4

88 AMowsw

| Jlun uonpnosxe | Sd

06 °@npow uonnasxe | Jd

14 Umo_)

A

€ PeEQ| ¢ PeO

A

|

| ea |

4

88 AMowsw

US 9,195,684 B2

Sheet 43 of 49

Nov. 24, 2015

U.S. Patent

$2011s Bunueys Jnoj ayy pue Buuapio uonnoaxs
U}IM 3OUBPIOJTR Ul SHIUN X3 1S 0] SYSE)
[erued Buipuodssaioo pue sBuidnosB a91|s puss

4 A

18411 passaooud
ale sa2l|s Bue)s Jnoj pue 1se| passanoid
ale sbuidnoub sa1js 8a.y) usBMIBq SBlEPUNOG
OM] Jeau $221|S JeL Yons siun ¥3 1S 28Iy
J0 Buniepio uonnooxs yse) ened sulwisiep

v A

Buidnoib so1is yoea 1o spus sy 1e Buidnoib
30IIS pua yoea 1o} 801Is Buuels e Ayjuspl

o A

Buidnoib
891[S 8IPPIL B o) S80S Buners om Amusp

0% A

syse) lened eanpoud o) Buiuoniued
¥SB1 8Y) U0 paseq (s)yser ayy uonined

<O
—

9 A

sbuidnosb
201s @anpaud o) sisjewesed Buissanold
BU) U)IM 9OUBPICIE U BIED BU) $$8004d

el A

sJereweled Buisseooid ay) pue syun 3
180 8y uo paseq Buuonnied yse; suiwlg)ep

&l A

S)IUN X3 1 S JO JaquinU B Uo paseq
e1ep sy 10 sisrsweled Buisssd0.d suILISIBp

o

0ev A

SHUN X3 154 84 Jo Yoes
LM pa]eInosse [ang| Ajljigeden e uo paseq

(s)ysB) 2L Jo) SYUN XT 1 S 2I0W JO 2U0 1I3(0S

7oe A

(s)xser Buipuodsaui02 e pue BIep SAIS03I

[{=]

91 A

US 9,195,684 B2

Sheet 44 of 49

Nov. 24, 2015

U.S. Patent

ver Old
AJowew g Jun X3 1S evq | g¢q | gza [g1 |
Klowsul J yun X3 1SQ — /v | srea | rza | g |
Kiowsu 9 Jun X3 1SQ opq | 9¢q | 9z [91a |
YWY |
Klowaul ¢ JUn X3 1SQ "_ oca | 610 | mig [219 |
A |
_
Alowau » Jun X3 1SQ ——+ 99 | g0 | wa | ca |
(]
_III“
Aowsw ¢ Jun X3 1S0 _ ¢la ___ Ha _ 014 _ 64 _
_
_
faowew Z yun X3 18Q [8 Lo | o9 [ca |
p——
m
Kiowsw | Jun X3 1SQ [va | ed ___ 2 | 1 |

ZGF $99l|s passanoidun _ 0S¥ $891|s passaooid

US 9,195,684 B2

Sheet 45 of 49

Nov. 24, 2015

U.S. Patent

[————— A
_ _
|| &wn | 3¢ o1
— xalsa | |
_ _
_ e |
°
[. I
| = _ _
] 8Gf un | [
<] xaLsa | | | _
_ [{08F $300]q PaPO2US JO PIOYSBILE 17 [
_ | 9% a|npowl Jajsuey) |
“ 5% Jun _ 81F ¥o0lq papoaus sy _ |
< _ %3180 _ Z5F uononisul Jajsuel) | 575 uoneww oE.\, A _
08F SY00[q [I | uoneooje _
papoous Jo [— I _ _
PIOYS3IU) | | 8Svwun | [797 ainpow |<€ |
> X3180 =71 _ 9180018 _ 0L ¥sel
81¥ 00(g _ “/ pIv seolls Jojes | = D " 897 ejep
pepoous | —_— | | 217 speads Buisssaoud |
ay I !
xaisa | | || 75 _
“ | 777 speads Buisssooid |~ ¢9¥ SNPOW uleysose I
| & | _
| s x3isq | | Oempousa |
¥St aomep Bunndwioo

US 9,195,684 B2

Sheet 46 of 49

Nov. 24, 2015

U.S. Patent

JluN UoNNJ8Xa
1Sa pJiyy 8y) 03 pue jlun uonnaexe | Sq
PUOISS B} O] JIUN UONNIEXa | S ISl BY) WO}
S$Y90|(PAPOUS OM) ISBS] JB IO} SanIqISuodsal
Buissa00.d JajSuBA ‘JIUN UORNIBXD
18a 184 ay) Jo peads Buissaaoid sy uey
Jaealb spjoysaly) ayy s1iey) paads Buissaooud
B SE JIUN UO[NJ8Xa [S PAIL B usym

T ~—————--

A20[q
POPOIUS QUO JSEI| JB B} UO ySE) [enJed puodss
B ‘Jun uonnoaxe | S puooss auy Aq ‘wiopsad

905 A

JIUN UORN08Xe | S(puodas
U Aq %90]q PPOSUS BUO 1SBS| JB 8Y) Ulelqo

0 A

Jlun uopNJIAXA
1SQ puooes ey 0} Jiun uohnosxs | S 1sil sU)
woy saniiqisuodsal Buissesaid Buiaisuen 1oj
80I[S B1ep Paseq-elep 1SI1 ay) JO Y20|q papodua
QU0 JSBY| 1B AJUsp! ‘Iun uonnaaxe 1S
18411 21 Jo poads buisseaoid sy uey paads
Ja1ealb pioysai ayi i ey pasds buisssooid
3y Sey Jiun uonndaxa | S puU0ISS sy usym

[l
[Te)

— S ——

un uonnosxe | Sq sl
aup 1o paads Buissaooid e uey) paads Jojesib

pIoysaiy e st jey pasds buissaroid e sey jun
UORNJAXd | S PUSISS B JAYIdUM SUILLISIep

[

003 A

S30I[S BJEp Paseq-elep 10 18s-qns ay)
10 201|S BJBP Paseq-ejep 1sJ1i B U0 %se) |eiyed
18J1) & wioyad 0) pajeoo|e Si JIun UoRNISXs

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
|

1SQ 1S/l B 818YM ‘SHUN UONNIBXS | SQ
10185 8U) J018S-qNS B 0} S80IIS BIep paseq-ejep
10 18S-QNS 8Y] U0 YSE) B JO douBW.IOUad 8)eo0|e

86 A

$90IIS EJep paseq-Aouepunpal 10 18s
-QNS 8y} PUB SBJI|S BJEP POSEq-Elep 10 18S-qNs
8U) ‘s)un uonnosxs 1 Sq JO 18s 8y Aq ‘81808l

%% A

$90l|S
BJep paseq-Aouepunpal Jo 19s-gns & Ojul S¥00|q
e1ep paseq-Aouepunpal Jo A)jeinid e sbuele

i A

S80I[S EJBp PaSEq-BIEP JO 185-qNS € ojul
$}00|q ejep pased-ejep Jo Aleinid e sbueue

Z6v \

$00[q
papooua aonpoid o) Xuew ejep ay) apoous

067 A

XUjet
Ejep e Ojul Bjep Jo JuswBas ejep e AU

8 A

S)UN UolNoEXa 1 S JO 18S B JO SHun uonnosxs
1Sq Jo spaads Buisseaoid paurenaase

ﬁ f

US 9,195,684 B2

Sheet 47 of 49

Nov. 24, 2015

U.S. Patent

vy "Old welwe|l g |ye| k| gmo
e |y |Be| e |ee| ;mo
pe|loe|qe|ee| z | gmol
guunx3 1sd ﬁ \ ¥ Xuew
Juunx3 1Sa AN# - - 0ZC UOIBLLIOJUI XLjeuw Jojelausb -gns Jojeseush Buurews:
9un X3 180 < m_ru_
glunx3 1sa ﬁ m Amal 0¢q 61q 8iq L LG L1 0O]JO0O] 0| 0| Sma
Fun X3 Hmoﬁ m Awal 914 GLq riq giq £lq Ol VL]|]O] O] O pmol
guunx3 1sa ﬁ numm Aal kAL LG 0Lq 80 |m 64 x| 0[O0] V)]O]O] Enu
gunx3 1sa ﬁ Mal 8q q 9q &q Gq O]JoJO]| L] O] gma
LN x4 1sd A_# T q €q Zq LG B ojojoj]o] ! | MOJ
€100 €100 ¢ 100 | 100 9lg
— uonas|as FIG xuew-qns Joyessuab
81 X1ew-gns 201|s Josyunysa e1ep
22G 10108J8S UWN|0d - > +
.c.
N““”“M Mw“ M“ M”“ M“ oo loee [£860 | o6 v _] oo
€ unyo 4L 1Lq 014 69 oJ :
Zunyo 8q .4 99 5q 099 |[eee| ciq i 19 g18syunyd
| unyo ¥4 £q 4 19 0vq |eee | £zq 44 129 g ieSpunNy
¥ 100 €100 2100 1109 0cq |eee £q 24 1q | 18SHUNLYR
Z7G XUJEW EJep Jasyunyd T~ 01G ejep

US 9,195,684 B2

Sheet 48 of 49

Nov. 24, 2015

U.S. Patent

lunxX3 1sd
[013U0D 10118 BY) 0) 89I[S E)EP PEPOoUS [ened
3} PUaS ‘Nun X3 1S |04U0D 10119 YJes Jo)

as A

Buidnoib s911s yoes Jo
901|S yoes 0} Buipuodse.102 82)|S EJEP PEPOUS
[ented e ajessusb ‘yun X3 15q Aiued yoes Joj

078 A

Buidnoub so11s
B 0] puodsolio0 1BY) S80I|S pSp02 JOLIS)M
PS]BID0SSE S)IUN X3 | S [01U02 Jous Anuapl

8 A

UONBLULIOJI XL)ew Jojesaush pue ‘syse)
[ened Buipuodsaniod ‘sbuidnoub so1s 21018

5% A

UONBLLIOJUI X)W JOJRIaUSH pue ‘syse)
[ensed Bulpuodsalioo ‘'sbuidnoib so1s anlgdal

= 7

gavy "ol

sjun
X3 1S 0) Ojul XLew Joieisuab pue ‘syse)
[enJed Buipuodsa.ioo ‘sbuidnolb 801 puss

2 A

UORBULIOJUI XL)ew Jojelsusb uie)qo

[a]
L

0eg A

syse) fensed aanpoud o) Buiuonued
Se} ay} uo paseq (s)ysey ayy uogiyed

O
~—

et A

sbuidnoub ao1|s Jo Jaquunu ploysaiy)
2podsp e aonpoid 0 sisreweled Buisssooid
B} LM SOUBPIOIIE Ul BIEP S} uoned

[e8
N
LO|

A

sisjeweled Buissaooid sy pue sjun X3
1SQ 8yy uo paseq Buiuonised yse) suiLIB)EpP

& A

SIUN X3 1S JO Jequinu e uo paseq
ejep ays Jo sisrpweled huissanosd suiwiziep

027 A

SHUN X3 1S3 ey Jo yoes
U)im pajeroosse [9As] Ajljigeded e uo paseq
(s)yse) 2L JoJ SHUN X3 1 S 2JOW 0 8U0 199]8S

-t
(a9

voe A

(s)yse1 Buipuodsaliod B pue ejep aAlsoal

O

921 A

US 9,195,684 B2

Sheet 49 of 49

A N

uonewJoul souewJopsd
uonnoaxa yse} |enJed ayy uo paseq
Buidnoib 801is ayy 0) Buipuodsaliod s80I|s
PaP09 10413 B)elausb 0) Jayjaym sulLIB)ep

875 A

unx3 1Sd
[04JUOD JO1I8 BY) 0} 8OIIS BIep Papoous [ened
U} puas ‘Jun X3 1S [0U0I JOLS YOBS J0}

sjun
X3 1S 10 18S Buipuodsa.i02 e Jo} uonewloul
aouewlouad uonnosxs yse |ened uieyqo

as A

7S A

Nov. 24, 2015

Buidnoib s011s yoes Jo 891fs yoes
0] Buipuodsa.i02 891js BEP PEpoIUS |eled
e ajesausb ‘Jun X3 1S |0AU0D JOLIS YIBS 10}

Buidnoub a21is e uo syse) lenued snoexe

s he

07% A

Buidnosb so1s
B 0} puodsa1109 Jey} Sedl|s PaP02 JOLB UM
PAJBIDOSSE SYIUN X3 1S [04U09 Joud Ayuapl

UOIBWIOJUI XL]ew Jojelauab pue ‘syse)
[enued Buipuodsaii09 ‘sbuidnoib sois 2101s

%3 A

U.S. Patent

5%C A

UOIJBLLIOJUI XLJew Jojessuab pue ‘syse)
lensed Buipuodsaui09 ‘sbuidnolb aol|s aAIgda)

= A

US 9,195,684 B2

1
REDUNDANT TASK EXECUTION IN A
DISTRIBUTED STORAGE AND TASK
NETWORK

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility patent application claims priority
pursuantto 35 U.S.C. §119(e) to U.S. Provisional Application
No. 61/605,869, entitled “TASK EXECUTION IN A DIS-
TRIBUTED STORAGE AND TASK NETWORK,” filed
Mar. 2, 2012, which is incorporated herein by reference in its
entirety and made part of the present U.S. Utility patent
application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computer networks and
more particularly to dispersed storage of data and distributed
task processing of data.

2. Description of Related Art

Computing devices are known to communicate data, pro-
cess data, and/or store data. Such computing devices range
from wireless smart phones, laptops, tablets, personal com-
puters (PC), work stations, and video game devices, to data
centers that support millions of web searches, stock trades, or
on-line purchases every day. In general, a computing device
includes a central processing unit (CPU), a memory system,
user input/output interfaces, peripheral device interfaces, and
an interconnecting bus structure.

As is further known, a computer may effectively extend its
CPU by using “cloud computing” to perform one or more
computing functions (e.g., a service, an application, an algo-
rithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an open
source software framework that supports distributed applica-
tions enabling application execution by thousands of comput-
ers.

In addition to cloud computing, a computer may use “cloud
storage” as part of its memory system. As is known, cloud
storage enables a user, via its computer, to store files, appli-
cations, etc. on an Internet storage system. The Internet stor-
age system may include a RAID (redundant array of indepen-
dent disks) system and/or a dispersed storage system that uses
an error correction scheme to encode data for storage.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a distributed computing system in accordance with the
present invention;

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present invention;

FIG. 3 is a diagram of an example of a distributed storage
and task processing in accordance with the present invention;

FIG. 4 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) processing
in accordance with the present invention;

FIG. 5 is a logic diagram of an example of a method for
outbound DST processing in accordance with the present
invention;

FIG. 6 is a schematic block diagram of an embodiment of
a dispersed error encoding in accordance with the present
invention;

FIG. 7 is a diagram of an example of a segment processing
of'the dispersed error encoding in accordance with the present
invention;

FIG. 8 is a diagram of an example of error encoding and
slicing processing of the dispersed error encoding in accor-
dance with the present invention;

FIG. 9 is a diagram of an example of grouping selection
processing of the outbound DST processing in accordance
with the present invention;

FIG. 10 is a diagram of an example of converting data into
slice groups in accordance with the present invention;

FIG. 11 is a schematic block diagram of an embodiment of
a DST execution unit in accordance with the present inven-
tion;

FIG. 12 is a schematic block diagram of an example of
operation of a DST execution unit in accordance with the
present invention;

FIG. 13 is a schematic block diagram of an embodiment of
an inbound distributed storage and/or task (DST) processing
in accordance with the present invention;

FIG. 14 is a logic diagram of an example of a method for
inbound DST processing in accordance with the present
invention;

FIG. 15 is a diagram of an example of de-grouping selec-
tion processing of the inbound DST processing in accordance
with the present invention;

FIG. 16 is a schematic block diagram of an embodiment of
a dispersed error decoding in accordance with the present
invention;

FIG. 17 is a diagram of an example of de-slicing and error
decoding processing of the dispersed error decoding in accor-
dance with the present invention;

FIG. 18 is a diagram of an example of a de-segment pro-
cessing of the dispersed error decoding in accordance with
the present invention;

FIG. 19 is a diagram of an example of converting slice
groups into data in accordance with the present invention;

FIG. 20 is a diagram of an example of a distributed storage
within the distributed computing system in accordance with
the present invention;

FIG. 21 is a schematic block diagram of an example of
operation of outbound distributed storage and/or task (DST)
processing for storing data in accordance with the present
invention;

FIG. 22 is a schematic block diagram of an example of a
dispersed error encoding for the example of FIG. 21 in accor-
dance with the present invention;

FIG. 23 is a diagram of an example of converting data into
pillar slice groups for storage in accordance with the present
invention;

FIG. 24 is a schematic block diagram of an example of a
storage operation of a DST execution unit in accordance with
the present invention;

US 9,195,684 B2

3

FIG. 25 is a schematic block diagram of an example of
operation of inbound distributed storage and/or task (DST)
processing for retrieving dispersed error encoded data in
accordance with the present invention;

FIG. 26 is a schematic block diagram of an example of a
dispersed error decoding for the example of FIG. 25 in accor-
dance with the present invention;

FIG. 27 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing a plurality of data and a plurality of task codes
in accordance with the present invention;

FIG. 28 is a schematic block diagram of an example of the
distributed computing system performing tasks on stored data
in accordance with the present invention;

FIG. 29 is a schematic block diagram of an embodiment of
atask distribution module facilitating the example of FIG. 28
in accordance with the present invention;

FIG. 30is a diagram of a specific example of the distributed
computing system performing tasks on stored data in accor-
dance with the present invention;

FIG. 31 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FI1G. 30
in accordance with the present invention;

FIG. 32 is a diagram of an example of DST allocation
information for the example of FIG. 30 in accordance with the
present invention;

FIGS. 33-38 are schematic block diagrams of the DSTN
module performing the example of FIG. 30 in accordance
with the present invention;

FIG. 39 is a diagram of an example of combining result
information into final results for the example of FIG. 30 in
accordance with the present invention;

FIG. 40A is a diagram illustrating encoding of data in
accordance with the present invention;

FIG. 40B is a schematic block diagram of a set of DST
execution units processing slice groupings in accordance
with the present invention;

FIG. 40C is a flowchart illustrating an example of gener-
ating a slice grouping in accordance with the present inven-
tion;

FIG. 40D is a flowchart illustrating an example of trans-
ferring a slice in accordance with the present invention;

FIG. 41A is a schematic block diagram of another set of
DST execution units processing slice groupings in accor-
dance with the present invention;

FIG. 41B is a schematic block diagram of another embodi-
ment of a distributed computing system in accordance with
the present invention;

FIG. 41C is a flowchart illustrating an example of execut-
ing redundant tasks in accordance with the present invention;

FIG. 41D is a flowchart illustrating an example of execut-
ing redundant tasks in accordance with the present invention;

FIG. 42A is a schematic block diagram of another set of
DST execution units processing slice groupings in accor-
dance with the present invention;

FIG. 42B is a flowchart illustrating another example of
generating a slice grouping in accordance with the present
invention;

FIG. 43A is a schematic block diagram of a set of DST
execution unit memories in accordance with the present
invention;

FIG. 43B is a schematic block diagram of another embodi-
ment of a distributed computing system in accordance with
the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 43C is a flowchart illustrating another example of
processing a slice grouping in accordance with the present
invention;

FIG. 44A is another diagram illustrating encoding of data
in accordance with the present invention;

FIG. 44B is a flowchart illustrating another example of
generating a slice grouping in accordance with the present
invention;

FIG. 44C is a flowchart illustrating an example of gener-
ating a partially encoded data slice in accordance with the
present invention; and

FIG. 45 is a flowchart illustrating another example of gen-
erating a partially encoded data slice in accordance with the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a schematic block diagram of an embodiment of
a distributed computing system 10 that includes a user device
12 and/or a user device 14, a distributed storage and/or task
(DST) processing unit 16, a distributed storage and/or task
network (DSTN) managing unit 18, a DST integrity process-
ing unit 20, and a distributed storage and/or task network
(DSTN) module 22. The components of the distributed com-
puting system 10 are coupled via a network 24, which may
include one or more wireless and/or wire lined communica-
tion systems; one or more private intranet systems and/or
public internet systems; and/or one or more local area net-
works (LAN) and/or wide area networks (WAN).

The DSTN module 22 includes a plurality of distributed
storage and/or task (DST) execution units 36 that may be
located at geographically different sites (e.g., one in Chicago,
one in Milwaukee, etc.). Each of the DST execution units is
operable to store dispersed error encoded data and/or to
execute, in a distributed manner, one or more tasks on data.
The tasks may be a simple function (e.g., a mathematical
function, a logic function, an identify function, a find func-
tion, a search engine function, a replace function, etc.), a
complex function (e.g., compression, human and/or com-
puter language translation, text-to-voice conversion, voice-
to-text conversion, etc.), multiple simple and/or complex
functions, one or more algorithms, one or more applications,
etc.

Each ofthe user devices 12-14, the DST processing unit 16,
the DSTN managing unit 18, and the DST integrity process-
ing unit 20 include a computing core 26 and may be a portable
computing device and/or a fixed computing device. A por-
table computing device may be a social networking device, a
gaming device, a cell phone, a smart phone, a personal digital
assistant, a digital music player, a digital video player, a
laptop computer, a handheld computer, a tablet, a video game
controller, and/or any other portable device that includes a
computing core. A fixed computing device may be a personal
computer (PC), a computer server, a cable set-top box, a
satellite receiver, a television set, a printer, a fax machine,
home entertainment equipment, a video game console, and/or
any type of home or office computing equipment. User device
12 and DST processing unit 16 are configured to include a
DST client module 34.

With respect to interfaces, each interface 30, 32, and 33
includes software and/or hardware to support one or more
communication links via the network 24 indirectly and/or
directly. For example, interfaces 30 support a communication
link (e.g., wired, wireless, direct, via a LAN, via the network
24, etc.) between user device 14 and the DST processing unit
16. As another example, interface 32 supports communica-
tion links (e.g., a wired connection, a wireless connection, a

US 9,195,684 B2

5

LAN connection, and/or any other type of connection to/from
the network 24) between user device 12 and the DSTN mod-
ule 22 and between the DST processing unit 16 and the DSTN
module 22. As yet another example, interface 33 supports a
communication link for each of the DSTN managing unit 18
and DST integrity processing unit 20 to the network 24.

The distributed computing system 10 is operable to support
dispersed storage (DS) error encoded data storage and
retrieval, to support distributed task processing on received
data, and/or to support distributed task processing on stored
data. In general and with respect to DS error encoded data
storage and retrieval, the distributed computing system 10
supports three primary operations: storage management, data
storage and retrieval (an example of which will be discussed
with reference to FIGS. 20-26), and data storage integrity
verification. In accordance with these three primary func-
tions, data can be encoded, distributedly stored in physically
different locations, and subsequently retrieved in a reliable
and secure manner. Such a system is tolerant of a significant
number of failures (e.g., up to a failure level, which may be
greater than or equal to a pillar width minus a decode thresh-
old minus one) that may result from individual storage device
failures and/or network equipment failures without loss of
data and without the need for a redundant or backup copy.
Further, the system allows the data to be stored for an indefi-
nite period of time without data loss and does so in a secure
manner (e.g., the system is very resistant to attempts at hack-
ing the data).

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, ifa second type of user device 14 has data 40 to store
in the DSTN module 22, it sends the data 40 to the DST
processing unit 16 via its interface 30. The interface 30 func-
tions to mimic a conventional operating system (OS) file
system interface (e.g., network file system (NFS), flash file
system (FFS), disk file system (DFS), file transfer protocol
(FTP), web-based distributed authoring and versioning
(WebDAV), etc.) and/or a block memory interface (e.g., small
computer system interface (SCSI), internet small computer
system interface (iISCSI), etc.). In addition, the interface 30
may attach a user identification code (ID) to the data 40.

To support storage management, the DSTN managing unit
18 performs DS management services. One such DS manage-
ment service includes the DSTN managing unit 18 establish-
ing distributed data storage parameters (e.g., vault creation,
distributed storage parameters, security parameters, billing
information, user profile information, etc.) for a user device
12-14 individually or as part of a group of user devices. For
example, the DSTN managing unit 18 coordinates creation of
a vault (e.g., a virtual memory block) within memory of the
DSTN module 22 for a user device, a group of devices, or for
public access and establishes per vault dispersed storage (DS)
error encoding parameters for a vault. The DSTN managing
unit 18 may facilitate storage of DS error encoding param-
eters for each vault of a plurality of vaults by updating registry
information for the distributed computing system 10. The
facilitating includes storing updated registry information in
one or more of the DSTN module 22, the user device 12, the
DST processing unit 16, and the DST integrity processing
unit 20.

The DS error encoding parameters (e.g. or dispersed stor-
age error coding parameters) include data segmenting infor-
mation (e.g., how many segments data (e.g., a file, a group of
files, a data block, etc.) is divided into), segment security
information (e.g., per segment encryption, compression,
integrity checksum, etc.), error coding information (e.g., pil-
lar width, decode threshold, read threshold, write threshold,

10

15

20

25

30

35

40

45

50

55

60

65

6

etc.), slicing information (e.g., the number of encoded data
slices that will be created for each data segment); and slice
security information (e.g., per encoded data slice encryption,
compression, integrity checksum, etc.).

The DSTN managing unit 18 creates and stores user profile
information (e.g., an access control list (ACL)) in local
memory and/or within memory of the DSTN module 22. The
user profile information includes authentication information,
permissions, and/or the security parameters. The security
parameters may include encryption/decryption scheme, one
or more encryption keys, key generation scheme, and/or data
encoding/decoding scheme.

The DSTN managing unit 18 creates billing information
for a particular user, a user group, a vault access, public vault
access, etc. For instance, the DSTN managing unit 18 tracks
the number of times a user accesses a private vault and/or
public vaults, which can be used to generate a per-access
billing information. In another instance, the DSTN managing
unit 18 tracks the amount of data stored and/or retrieved by a
user device and/or a user group, which can be used to generate
a per-data-amount billing information.

Another DS management service includes the DSTN man-
aging unit 18 performing network operations, network
administration, and/or network maintenance. Network opera-
tions includes authenticating user data allocation requests
(e.g., read and/or write requests), managing creation of
vaults, establishing authentication credentials for user
devices, adding/deleting components (e.g., user devices, DST
execution units, and/or DST processing units) from the dis-
tributed computing system 10, and/or establishing authenti-
cation credentials for DST execution units 36. Network
administration includes monitoring devices and/or units for
failures, maintaining vault information, determining device
and/or unit activation status, determining device and/or unit
loading, and/or determining any other system level operation
that affects the performance level of the system 10. Network
maintenance includes facilitating replacing, upgrading,
repairing, and/or expanding a device and/or unit ofthe system
10.

To support data storage integrity verification within the
distributed computing system 10, the DST integrity process-
ing unit 20 performs rebuilding of ‘bad’ or missing encoded
data slices. At a high level, the DST integrity processing unit
20 performs rebuilding by periodically attempting to retrieve/
list encoded data slices, and/or slice names of the encoded
data slices, from the DSTN module 22. For retrieved encoded
slices, they are checked for errors due to data corruption,
outdated version, etc. If a slice includes an error, it is flagged
as a ‘bad’ slice. For encoded data slices that were not received
and/or not listed, they are flagged as missing slices. Bad
and/or missing slices are subsequently rebuilt using other
retrieved encoded data slices that are deemed to be good
slices to produce rebuilt slices. The rebuilt slices are stored in
memory of the DSTN module 22. Note that the DST integrity
processing unit 20 may be a separate unit as shown, it may be
included in the DSTN module 22, it may be included in the
DST processing unit 16, and/or distributed among the DST
execution units 36.

To support distributed task processing on received data, the
distributed computing system 10 has two primary operations:
DST (distributed storage and/or task processing) manage-
ment and DST execution on received data (an example of
which will be discussed with reference to FIGS. 3-19). With
respect to the storage portion of the DST management, the
DSTN managing unit 18 functions as previously described.
With respect to the tasking processing of the DST manage-
ment, the DSTN managing unit 18 performs distributed task

US 9,195,684 B2

7

processing (DTP) management services. One such DTP man-
agement service includes the DSTN managing unit 18 estab-
lishing DTP parameters (e.g., user-vault affiliation informa-
tion, billing information, user-task information, etc.) for a
user device 12-14 individually or as part of a group of user
devices.

Another DTP management service includes the DSTN
managing unit 18 performing DTP network operations, net-
work administration (which is essentially the same as
described above), and/or network maintenance (which is
essentially the same as described above). Network operations
include, but are not limited to, authenticating user task pro-
cessing requests (e.g., valid request, valid user, etc.), authen-
ticating results and/or partial results, establishing DTP
authentication credentials for user devices, adding/deleting
components (e.g., user devices, DST execution units, and/or
DST processing units) from the distributed computing sys-
tem, and/or establishing DTP authentication credentials for
DST execution units.

To support distributed task processing on stored data, the
distributed computing system 10 has two primary operations:
DST (distributed storage and/or task) management and DST
execution on stored data. With respect to the DST execution
on stored data, if the second type of user device 14 has a task
request 38 for execution by the DSTN module 22, it sends the
task request 38 to the DST processing unit 16 via its interface
30. An example of DST execution on stored data will be
discussed in greater detail with reference to FIGS. 27-39.
With respect to the DST management, it is substantially simi-
lar to the DST management to support distributed task pro-
cessing on received data.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface module 60, at least one 10 device interface module
62, a read only memory (ROM) basic input output system
(BIOS) 64, and one or more memory interface modules. The
one or more memory interface module(s) includes one or
more of a universal serial bus (USB) interface module 66, a
host bus adapter (HBA) interface module 68, a network inter-
face module 70, a flash interface module 72, a hard drive
interface module 74, and a DSTN interface module 76.

The DSTN interface module 76 functions to mimic a con-
ventional operating system (OS) file system interface (e.g.,
network file system (NFS), flash file system (FFS), disk file
system (DFS), file transfer protocol (FTP), web-based dis-
tributed authoring and versioning (WebDAV), etc.) and/or a
block memory interface (e.g., small computer system inter-
face (SCSI), internet small computer system interface
(iSCSI), etc.). The DSTN interface module 76 and/or the
network interface module 70 may function as the interface 30
ofthe user device 14 of FIG. 1. Further note that the IO device
interface module 62 and/or the memory interface modules
may be collectively or individually referred to as 1O ports.

FIG. 3 is a diagram of an example of the distributed com-
puting system performing a distributed storage and task pro-
cessing operation. The distributed computing system
includes a DST (distributed storage and/or task) client mod-
ule 34 (which may be in user device 14 and/or in DST pro-
cessing unit 16 of FIG. 1), a network 24, a plurality of DST
execution units 1-» that includes two or more DST execution
units 36 of FIG. 1 (which form at least a portion of DSTN
module 22 of FIG. 1), a DST managing module (not shown),
and a DST integrity verification module (not shown). The
DST client module 34 includes an outbound DST processing

10

15

20

25

30

35

40

45

50

55

60

65

8

section 80 and an inbound DST processing section 82. Each
of the DST execution units 1-z includes a controller 86, a
processing module 84, memory 88, a DT (distributed task)
execution module 90, and a DST client module 34.

In an example of operation, the DST client module 34
receives data 92 and one or more tasks 94 to be performed
upon the data 92. The data 92 may be of any size and of any
content, where, due to the size (e.g., greater than a few Terra-
Bytes), the content (e.g., secure data, etc.), and/or task(s)
(e.g., MIPS intensive), distributed processing of the task(s) on
the data is desired. For example, the data 92 may be one or
more digital books, a copy of a company’s emails, a large-
scale Internet search, a video security file, one or more enter-
tainment video files (e.g., television programs, movies, etc.),
data files, and/or any other large amount of data (e.g., greater
than a few Terra-Bytes).

Within the DST client module 34, the outbound DST pro-
cessing section 80 receives the data 92 and the task(s) 94. The
outbound DST processing section 80 processes the data 92 to
produce slice groupings 96. As an example of such process-
ing, the outbound DST processing section 80 partitions the
data 92 into a plurality of data partitions. For each data par-
tition, the outbound DST processing section 80 dispersed
storage (DS) error encodes the data partition to produce
encoded data slices and groups the encoded data slices into a
slice grouping 96. In addition, the outbound DST processing
section 80 partitions the task 94 into partial tasks 98, where
the number of partial tasks 98 may correspond to the number
of'slice groupings 96.

The outbound DST processing section 80 then sends, via
the network 24, the slice groupings 96 and the partial tasks 98
to the DST execution units 1-» of the DSTN module 22 of
FIG. 1. Forexample, the outbound DST processing section 80
sends slice group 1 and partial task 1 to DST execution unit 1.
As another example, the outbound DST processing section 80
sends slice group #n and partial task #n to DST execution unit
#n.

Each DST execution unit performs its partial task 98 upon
its slice group 96 to produce partial results 102. For example,
DST execution unit #1 performs partial task #1 on slice group
#1 to produce a partial result #1, for results. As a more specific
example, slice group #1 corresponds to a data partition of a
series of digital books and the partial task #1 corresponds to
searching for specific phrases, recording where the phrase is
found, and establishing a phrase count. In this more specific
example, the partial result #1 includes information as to
where the phrase was found and includes the phrase count.

Upon completion of generating their respective partial
results 102, the DST execution units send, via the network 24,
their partial results 102 to the inbound DST processing sec-
tion 82 of the DST client module 34. The inbound DST
processing section 82 processes the received partial results
102 to produce a result 104. Continuing with the specific
example of the preceding paragraph, the inbound DST pro-
cessing section 82 combines the phrase count from each of the
DST execution units 36 to produce a total phrase count. In
addition, the inbound DST processing section 82 combines
the ‘where the phrase was found’ information from each of
the DST execution units 36 within their respective data par-
titions to produce ‘where the phrase was found’ information
for the series of digital books.

In another example of operation, the DST client module 34
requests retrieval of stored data within the memory of the
DST execution units 36 (e.g., memory of the DSTN module).
In this example, the task 94 is retrieve data stored in the
memory of the DSTN module. Accordingly, the outbound
DST processing section 80 converts the task 94 into a plural-

US 9,195,684 B2

9

ity of partial tasks 98 and sends the partial tasks 98 to the
respective DST execution units 1-7.

In response to the partial task 98 of retrieving stored data,
a DST execution unit 36 identifies the corresponding encoded
data slices 100 and retrieves them. For example, DST execu-
tion unit #1 receives partial task #1 and retrieves, in response
thereto, retrieved slices #1. The DST execution units 36 send
their respective retrieved slices 100 to the inbound DST pro-
cessing section 82 via the network 24.

The inbound DST processing section 82 converts the
retrieved slices 100 into data 92. For example, the inbound
DST processing section 82 de-groups the retrieved slices 100
to produce encoded slices per data partition. The inbound
DST processing section 82 then DS error decodes the
encoded slices per data partition to produce data partitions.
The inbound DST processing section 82 de-partitions the data
partitions to recapture the data 92.

FIG. 4 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) processing
section 80 of a DST client module 34 FIG. 1 coupled to a
DSTN module 22 of a FIG. 1 (e.g., a plurality of n DST
execution units 36) via a network 24. The outbound DST
processing section 80 includes a data partitioning module
110, a dispersed storage (DS) error encoding module 112, a
grouping selector module 114, a control module 116, and a
distributed task control module 118.

In an example of operation, the data partitioning module
110 partitions data 92 into a plurality of data partitions 120.
The number of partitions and the size of the partitions may be
selected by the control module 116 via control 160 based on
the data 92 (e.g., its size, its content, etc.), a corresponding
task 94 to be performed (e.g., simple, complex, single step,
multiple steps, etc.), DS encoding parameters (e.g., pillar
width, decode threshold, write threshold, segment security
parameters, slice security parameters, etc.), capabilities of the
DST execution units 36 (e.g., processing resources, availabil-
ity of processing recourses, etc.), and/or as may be inputted
by a user, system administrator, or other operator (human or
automated). For example, the data partitioning module 110
partitions the data 92 (e.g., 100 Terra-Bytes) into 100,000
data segments, each being 1 Giga-Byte in size. Alternatively,
the data partitioning module 110 partitions the data 92 into a
plurality of data segments, where some of data segments are
of a different size, are of the same size, or a combination
thereof.

The DS error encoding module 112 receives the data par-
titions 120 in a serial manner, a parallel manner, and/or a
combination thereof. For each data partition 120, the DS error
encoding module 112 DS error encodes the data partition 120
in accordance with control information 160 from the control
module 116 to produce encoded data slices 122. The DS error
encoding includes segmenting the data partition into data
segments, segment security processing (e.g., encryption,
compression, watermarking, integrity check (e.g., CRC),
etc.), error encoding, slicing, and/or per slice security pro-
cessing (e.g., encryption, compression, watermarking, integ-
rity check (e.g., CRC), etc.). The control information 160
indicates which steps of the DS error encoding are active for
a given data partition and, for active steps, indicates the
parameters for the step. For example, the control information
160 indicates that the error encoding is active and includes
error encoding parameters (e.g., pillar width, decode thresh-
old, write threshold, read threshold, type of error encoding,
etc.).

10

15

20

25

30

35

40

45

50

55

60

65

10

The grouping selector module 114 groups the encoded
slices 122 of a data partition into a set of slice groupings 96.
The number of slice groupings corresponds to the number of
DST execution units 36 identified for a particular task 94. For
example, if five DST execution units 36 are identified for the
particular task 94, the grouping selector module groups the
encoded slices 122 of a data partition into five slice groupings
96. The grouping selector module 114 outputs the slice
groupings 96 to the corresponding DST execution units 36 via
the network 24.

The distributed task control module 118 receives the task
94 and converts the task 94 into a set of partial tasks 98. For
example, the distributed task control module 118 receives a
task to find where in the data (e.g., a series of books) a phrase
occurs and a total count of the phrase usage in the data. In this
example, the distributed task control module 118 replicates
the task 94 for each DST execution unit 36 to produce the
partial tasks 98. In another example, the distributed task con-
trol module 118 receives a task to find where in the data a first
phrase occurs, where in the data a second phrase occurs, and
atotal count for each phrase usage in the data. In this example,
the distributed task control module 118 generates a first set of
partial tasks 98 for finding and counting the first phase and a
second set of partial tasks for finding and counting the second
phrase. The distributed task control module 118 sends respec-
tive first and/or second partial tasks 98 to each DST execution
unit 36.

FIG. 5 is a logic diagram of an example of a method for
outbound distributed storage and task (DST) processing that
begins at step 126 where a DST client module receives data
and one or more corresponding tasks. The method continues
at step 128 where the DST client module determines a number
of DST units to support the task for one or more data parti-
tions. For example, the DST client module may determine the
number of DST units to support the task based on the size of
the data, the requested task, the content of the data, a prede-
termined number (e.g., user indicated, system administrator
determined, etc.), available DST units, capability of the DST
units, and/or any other factor regarding distributed task pro-
cessing of the data. The DST client module may select the
same DST units for each data partition, may select different
DST units for the data partitions, or a combination thereof.

The method continues at step 130 where the DST client
module determines processing parameters of the data based
on the number of DST units selected for distributed task
processing. The processing parameters include data partition-
ing information, DS encoding parameters, and/or slice group-
ing information. The data partitioning information includes a
number of data partitions, size of each data partition, and/or
organization of the data partitions (e.g., number of data
blocks in a partition, the size of the data blocks, and arrange-
ment of the data blocks). The DS encoding parameters
include segmenting information, segment security informa-
tion, error encoding information (e.g., dispersed storage error
encoding function parameters including one or more of pillar
width, decode threshold, write threshold, read threshold, gen-
erator matrix), slicing information, and/or per slice security
information. The slice grouping information includes infor-
mation regarding how to arrange the encoded data slices into
groups for the selected DST units. As a specific example, if
the DST client module determines that five DST units are
needed to support the task, then it determines that the error
encoding parameters include a pillar width of five and a
decode threshold of three.

The method continues at step 132 where the DST client
module determines task partitioning information (e.g., how to
partition the tasks) based on the selected DST units and data

US 9,195,684 B2

11

processing parameters. The data processing parameters
include the processing parameters and DST unit capability
information. The DST unit capability information includes
the number of DT (distributed task) execution units, execu-
tion capabilities of each DT execution unit (e.g., MIPS capa-
bilities, processing resources (e.g., quantity and capability of
microprocessors, CPUs, digital signal processors, co-proces-
sor, microcontrollers, arithmetic logic circuitry, and/or and
the other analog and/or digital processing circuitry), avail-
ability of the processing resources, memory information
(e.g., type, size, availability, etc.)), and/or any information
germane to executing one or more tasks.

The method continues at step 134 where the DST client
module processes the data in accordance with the processing
parameters to produce slice groupings. The method continues
at step 136 where the DST client module partitions the task
based on the task partitioning information to produce a set of
partial tasks. The method continues at step 138 where the
DST client module sends the slice groupings and the corre-
sponding partial tasks to respective DST units.

FIG. 6 is a schematic block diagram of an embodiment of
the dispersed storage (DS) error encoding module 112 of an
outbound distributed storage and task (DST) processing sec-
tion. The DS error encoding module 112 includes a segment
processing module 142, a segment security processing mod-
ule 144, an error encoding module 146, a slicing module 148,
and a per slice security processing module 150. Each ofthese
modules is coupled to a control module 116 to receive control
information 160 therefrom.

In an example of operation, the segment processing mod-
ule 142 receives a data partition 120 from a data partitioning
module and receives segmenting information as the control
information 160 from the control module 116. The segment-
ing information indicates how the segment processing mod-
ule 142 is to segment the data partition 120. For example, the
segmenting information indicates how many rows to segment
the data based on a decode threshold of an error encoding
scheme, indicates how many columns to segment the data into
based on a number and size of data blocks within the data
partition 120, and indicates how many columns to include in
a data segment 152. The segment processing module 142
segments the data 120 into data segments 152 in accordance
with the segmenting information.

The segment security processing module 144, when
enabled by the control module 116, secures the data segments
152 based on segment security information received as con-
trol information 160 from the control module 116. The seg-
ment security information includes data compression,
encryption, watermarking, integrity check (e.g., cyclic redun-
dancy check (CRC), etc.), and/or any other type of digital
security. For example, when the segment security processing
module 144 is enabled, it may compress a data segment 152,
encrypt the compressed data segment, and generate a CRC
value for the encrypted data segment to produce a secure data
segment 154. When the segment security processing module
144 is not enabled, it passes the data segments 152 to the error
encoding module 146 or is bypassed such that the data seg-
ments 152 are provided to the error encoding module 146.

The error encoding module 146 encodes the secure data
segments 154 in accordance with error correction encoding
parameters received as control information 160 from the con-
trol module 116. The error correction encoding parameters
(e.g., also referred to as dispersed storage error coding param-
eters) include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an online coding algorithm, an
information dispersal algorithm, etc.), a pillar width, a decode

20

25

30

40

45

55

12
threshold, a read threshold, a write threshold, etc. For
example, the error correction encoding parameters identify a
specific error correction encoding scheme, specifies a pillar
width of five, and specifies a decode threshold of three. From
these parameters, the error encoding module 146 encodes a
data segment 154 to produce an encoded data segment 156.

The slicing module 148 slices the encoded data segment
156 in accordance with the pillar width of the error correction
encoding parameters received as control information 160. For
example, if the pillar width is five, the slicing module 148
slices an encoded data segment 156 into a set of five encoded
data slices. As such, for a plurality of encoded data segments
156 for a given data partition, the slicing module outputs a
plurality of sets of encoded data slices 158.

The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice 158 based on slice security information received as
control information 160 from the control module 116. The
slice security information includes data compression, encryp-
tion, watermarking, integrity check (e.g., CRC, etc.), and/or
any other type of digital security. For example, when the per
slice security processing module 150 is enabled, it com-
presses an encoded data slice 158, encrypts the compressed
encoded data slice, and generates a CRC value for the
encrypted encoded data slice to produce a secure encoded
data slice 122. When the per slice security processing module
150 is not enabled, it passes the encoded data slices 158 or is
bypassed such that the encoded data slices 158 are the output
of the DS error encoding module 112. Note that the control
module 116 may be omitted and each module stores its own
parameters.

FIG. 7 is a diagram of an example of a segment processing
of a dispersed storage (DS) error encoding module. In this
example, a segment processing module 142 receives a data
partition 120 that includes 45 data blocks (e.g., d1-d45),
receives segmenting information (i.e., control information
160) from a control module, and segments the data partition
120 in accordance with the control information 160 to pro-
duce data segments 152. Each data block may be of the same
size as other data blocks or of a different size. In addition, the
size of each data block may be a few bytes to megabytes of
data. As previously mentioned, the segmenting information
indicates how many rows to segment the data partition into,
indicates how many columns to segment the data partition
into, and indicates how many columns to include in a data
segment.

Inthis example, the decode threshold of the error encoding
scheme is three; as such the number of rows to divide the data
partition into is three. The number of columns for each row is
set to 15, which is based on the number and size of data
blocks. The data blocks of the data partition are arranged in
rows and columns in a sequential order (i.e., the first row
includes the first 15 data blocks; the second row includes the
second 15 data blocks; and the third row includes the last 15
data blocks).

With the data blocks arranged into the desired sequential
order, they are divided into data segments based on the seg-
menting information. In this example, the data partition is
divided into 8 data segments; the first 7 include 2 columns of
three rows and the last includes 1 column of three rows. Note
that the first row of the 8 data segments is in sequential order
of the first 15 data blocks; the second row of the 8 data
segments in sequential order of the second 15 datablocks; and
the third row of the 8 data segments in sequential order of the
last 15 data blocks. Note that the number of data blocks, the

US 9,195,684 B2

13

grouping of the data blocks into segments, and size of the data
blocks may vary to accommodate the desired distributed task
processing function.

FIG. 8 is a diagram of an example of error encoding and
slicing processing of the dispersed error encoding processing
the data segments of FIG. 7. In this example, data segment 1
includes 3 rows with each row being treated as one word for
encoding. As such, data segment 1 includes three words for
encoding: word 1 including data blocks d1 and d2, word 2
including data blocks d16 and d17, and word 3 including data
blocks d31 and d32. Each of data segments 2-7 includes three
words where each word includes two data blocks. Data seg-
ment 8 includes three words where each word includes a
single data block (e.g., d15, d30, and d45).

In operation, an error encoding module 146 and a slicing
module 148 convert each data segment into a set of encoded
data slices in accordance with error correction encoding
parameters as control information 160. More specifically,
when the error correction encoding parameters indicate a
unity matrix Reed-Solomon based encoding algorithm, 5 pil-
lars, and decode threshold of 3, the first three encoded data
slices of the set of encoded data slices for a data segment are
substantially similar to the corresponding word of the data
segment. For instance, when the unity matrix Reed-Solomon
based encoding algorithm is applied to data segment 1, the
content of the first encoded data slice (DS1_d1&2) of the first
set of encoded data slices (e.g., corresponding to data seg-
ment 1) is substantially similar to content of the first word
(e.g., d1 & d2); the content of the second encoded data slice
(DS1_d16&17) of the first set of encoded data slices is sub-
stantially similar to content of the second word (e.g., d16 &
d17); and the content of the third encoded data slice
(DS1_d31&32) of the first set of encoded data slices is sub-
stantially similar to content of the third word (e.g., d31 &
d32).

The content of the fourth and fifth encoded data slices (e.g.,
ES1_1 and ES1_2) of the first set of encoded data slices
include error correction data based on the first-third words of
the first data segment. With such an encoding and slicing
scheme, retrieving any three of the five encoded data slices
allows the data segment to be accurately reconstructed.

The encoding and slices of data segments 2-7 yield sets of
encoded data slices similar to the set of encoded data slices of
data segment 1. For instance, the content of the first encoded
data slice (DS2_d3&4) of the second set of encoded data
slices (e.g., corresponding to data segment 2) is substantially
similar to content of the first word (e.g., d3 & d4); the content
of the second encoded data slice (DS2_d18&19) of the sec-
ond set of encoded data slices is substantially similar to con-
tent of the second word (e.g., d18 & d19); and the content of
the third encoded data slice (DS2_d33&34) of the second set
of'encoded data slices is substantially similar to content of the
third word (e.g., d33 & d34). The content of the fourth and
fifth encoded data slices (e.g., ES1_1 and ES1_2) of the
second set of encoded data slices includes error correction
databased on the first-third words of the second data segment.

FIG. 9 is a diagram of an example of grouping selection
processing of an outbound distributed storage and task (DST)
processing in accordance with group selection information as
control information 160 from a control module. Encoded
slices for data partition 122 are grouped in accordance with
the control information 160 to produce slice groupings 96. In
this example, a grouping selection module 114 organizes the
encoded data slices into five slice groupings (e.g., one for
each DST execution unit of a distributed storage and task
network (DSTN) module). As a specific example, the group-
ing selection module 114 creates a first slice grouping for a

10

15

20

25

30

35

40

45

50

55

60

65

14

DST execution unit #1, which includes first encoded slices of
each of the sets of encoded slices. As such, the first DST
execution unit receives encoded data slices corresponding to
data blocks 1-15 (e.g., encoded data slices of contiguous
data).

The grouping selection module 114 also creates a second
slice grouping for a DST execution unit #2, which includes
second encoded slices of each of the sets of encoded slices. As
such, the second DST execution unit receives encoded data
slices corresponding to data blocks 16-30. The grouping
selection module 114 further creates a third slice grouping for
DST execution unit #3, which includes third encoded slices of
each of the sets of encoded slices. As such, the third DST
execution unit receives encoded data slices corresponding to
data blocks 31-45.

The grouping selection module 114 creates a fourth slice
grouping for DST execution unit #4, which includes fourth
encoded slices of each of the sets of encoded slices. As such,
the fourth DST execution unit receives encoded data slices
corresponding to first error encoding information (e.g.,
encoded data slices of error coding (EC) data). The grouping
selection module 114 further creates a fifth slice grouping for
DST execution unit #5, which includes fifth encoded slices of
each of the sets of encoded slices. As such, the fifth DST
execution unit receives encoded data slices corresponding to
second error encoding information.

FIG. 10 is a diagram of an example of converting data 92
into slice groups that expands on the preceding figures. As
shown, the data 92 is partitioned in accordance with a parti-
tioning function 164 into a plurality of data partitions (1-x,
where x is an integer greater than 4). Each data partition (or
chunkset of data) is encoded and grouped into slice groupings
as previously discussed by an encoding and grouping func-
tion 166. For a given data partition, the slice groupings are
sent to distributed storage and task (DST) execution units.
From data partition to data partition, the ordering of the slice
groupings to the DST execution units may vary.

For example, the slice groupings of data partition #1 is sent
to the DST execution units such that the first DST execution
receives first encoded data slices of each of the sets of
encoded data slices, which corresponds to a first continuous
data chunk of the first data partition (e.g., refer to FIG. 9), a
second DST execution receives second encoded data slices of
each of'the sets of encoded data slices, which corresponds to
a second continuous data chunk of the first data partition, etc.

For the second data partition, the slice groupings may be
sent to the DST execution units in a different order than it was
done for the first data partition. For instance, the first slice
grouping of the second data partition (e.g., slice group 2_1) is
sent to the second DST execution unit; the second slice group-
ing of the second data partition (e.g., slice group 2_2) is sent
to the third DST execution unit; the third slice grouping of the
second data partition (e.g., slice group 2_3) is sent to the
fourth DST execution unit; the fourth slice grouping of the
second data partition (e.g., slice group 2_4, which includes
first error coding information) is sent to the fitth DST execu-
tion unit; and the fifth slice grouping of the second data
partition (e.g., slice group 2_5, which includes second error
coding information) is sent to the first DST execution unit.

The pattern of sending the slice groupings to the set of DST
execution units may vary in a predicted pattern, a random
pattern, and/or a combination thereof from data partition to
data partition. In addition, from data partition to data parti-
tion, the set of DST execution units may change. For example,
for the first data partition, DST execution units 1-5 may be
used; for the second data partition, DST execution units 6-10
may be used; for the third data partition, DST execution units

US 9,195,684 B2

15

3-7 may be used; etc. As is also shown, the task is divided into
partial tasks that are sent to the DST execution units in con-
junction with the slice groupings of the data partitions.

FIG. 11 is a schematic block diagram of an embodiment of
a DST (distributed storage and/or task) execution unit that
includes an interface 169, a controller 86, memory 88, one or
more DT (distributed task) execution modules 90, and a DST
client module 34. The memory 88 is of sufficient size to store
a significant number of encoded data slices (e.g., thousands of
slices to hundreds-of-millions of slices) and may include one
or more hard drives and/or one or more solid-state memory
devices (e.g., flash memory, DRAM, etc.).

In an example of storing a slice group, the DST execution
module receives a slice grouping 96 (e.g., slice group #1) via
interface 169. The slice grouping 96 includes, per partition,
encoded data slices of contiguous data or encoded data slices
of'error coding (EC) data. For slice group #1, the DST execu-
tion module receives encoded data slices of contiguous data
for partitions #1 and #x (and potentially others between 3 and
x) and receives encoded data slices of EC data for partitions
#2 and #3 (and potentially others between 3 and x). Examples
of encoded data slices of contiguous data and encoded data
slices of error coding (EC) data are discussed with reference
to FIG. 9. The memory 88 stores the encoded data slices of
slice groupings 96 in accordance with memory control infor-
mation 174 it receives from the controller 86.

The controller 86 (e.g., a processing module, a CPU, etc.)
generates the memory control information 174 based on a
partial task(s) 98 and distributed computing information (e.g.,
user information (e.g., user ID, distributed computing per-
missions, data access permission, etc.), vault information
(e.g., virtual memory assigned to user, user group, temporary
storage for task processing, etc.), task validation information,
etc.). For example, the controller 86 interprets the partial
task(s) 98 in light of the distributed computing information to
determine whether a requestor is authorized to perform the
task 98, is authorized to access the data, and/or is authorized
to perform the task on this particular data. When the requestor
is authorized, the controller 86 determines, based on the task
98 and/or another input, whether the encoded data slices of
the slice grouping 96 are to be temporarily stored or perma-
nently stored. Based on the foregoing, the controller 86 gen-
erates the memory control information 174 to write the
encoded data slices of the slice grouping 96 into the memory
88 and to indicate whether the slice grouping 96 is perma-
nently stored or temporarily stored.

With the slice grouping 96 stored in the memory 88, the
controller 86 facilitates execution of the partial task(s) 98. In
an example, the controller 86 interprets the partial task 98 in
light of the capabilities of the DT execution module(s) 90.
The capabilities include one or more of MIPS capabilities,
processing resources (e.g., quantity and capability of micro-
processors, CPUs, digital signal processors, co-processor,
microcontrollers, arithmetic logic circuitry, and/or any other
analog and/or digital processing circuitry), availability of the
processing resources, etc. If the controller 86 determines that
the DT execution module(s) 90 have sufficient capabilities, it
generates task control information 176.

The task control information 176 may be a generic instruc-
tion (e.g., perform the task on the stored slice grouping) or a
series of operational codes. In the former instance, the DT
execution module 90 includes a co-processor function spe-
cifically configured (fixed or programmed) to perform the
desired task 98. In the latter instance, the DT execution mod-
ule 90 includes a general processor topology where the con-
troller stores an algorithm corresponding to the particular task
98. In this instance, the controller 86 provides the operational

10

15

20

25

30

35

40

45

50

55

60

65

16

codes (e.g., assembly language, source code of a program-
ming language, object code, etc.) of the algorithm to the DT
execution module 90 for execution.

Depending on the nature of the task 98, the DT execution
module 90 may generate intermediate partial results 102 that
are stored in the memory 88 or in a cache memory (not shown)
within the DT execution module 90. In either case, when the
DT execution module 90 completes execution of the partial
task 98, it outputs one or more partial results 102. The partial
results 102 may also be stored in memory 88.

If, when the controller 86 is interpreting whether capabili-
ties of the DT execution module(s) 90 can support the partial
task 98, the controller 86 determines that the DT execution
module(s) 90 cannot adequately support the task 98 (e.g.,
does not have the right resources, does not have sufficient
available resources, available resources would be too slow,
etc.), it then determines whether the partial task 98 should be
fully offloaded or partially offloaded.

If the controller 86 determines that the partial task 98
should be fully offloaded, it generates DST control informa-
tion 178 and provides it to the DST client module 34. The
DST control information 178 includes the partial task 98,
memory storage information regarding the slice grouping 96,
and distribution instructions. The distribution instructions
instruct the DST client module 34 to divide the partial task 98
into sub-partial tasks 172, to divide the slice grouping 96 into
sub-slice groupings 170, and identify other DST execution
units. The DST client module 34 functions in a similar man-
ner as the DST client module 34 of FIGS. 3-10 to produce the
sub-partial tasks 172 and the sub-slice groupings 170 in
accordance with the distribution instructions.

The DST client module 34 receives DST feedback 168
(e.g., sub-partial results), via the interface 169, from the DST
execution units to which the task was offloaded. The DST
client module 34 provides the sub-partial results to the DST
execution unit, which processes the sub-partial results to pro-
duce the partial result(s) 102.

If the controller 86 determines that the partial task 98
should be partially offloaded, it determines what portion of
the task 98 and/or slice grouping 96 should be processed
locally and what should be offloaded. For the portion that is
being locally processed, the controller 86 generates task con-
trol information 176 as previously discussed. For the portion
that is being offloaded, the controller 86 generates DST con-
trol information 178 as previously discussed.

When the DST client module 34 receives DST feedback
168 (e.g., sub-partial results) from the DST executions units
to which a portion of the task was offloaded, it provides the
sub-partial results to the DT execution module 90. The DT
execution module 90 processes the sub-partial results with the
sub-partial results it created to produce the partial result(s)
102.

The memory 88 may be further utilized to retrieve one or
more of stored slices 100, stored results 104, partial results
102 when the DT execution module 90 stores partial results
102 and/or results 104 and the memory 88. For example,
when the partial task 98 includes a retrieval request, the
controller 86 outputs the memory control 174 to the memory
88 to facilitate retrieval of slices 100 and/or results 104.

FIG. 12 is a schematic block diagram of an example of
operation of a distributed storage and task (DST) execution
unit storing encoded data slices and executing a task thereon.
To store the encoded data slices of a partition 1 of slice
grouping 1, a controller 86 generates write commands as
memory control information 174 such that the encoded slices
are stored in desired locations (e.g., permanent or temporary)
within memory 88.

US 9,195,684 B2

17

Once the encoded slices are stored, the controller 86 pro-
vides task control information 176 to a distributed task (DT)
execution module 90. As a first step of executing the task in
accordance with the task control information 176, the DT
execution module 90 retrieves the encoded slices from
memory 88. The DT execution module 90 then reconstructs
contiguous data blocks of a data partition. As shown for this
example, reconstructed contiguous data blocks of data parti-
tion 1 include data blocks 1-15 (e.g., d1-d15).

With the contiguous data blocks reconstructed, the DT
execution module 90 performs the task on the reconstructed
contiguous data blocks. For example, the task may be to
search the reconstructed contiguous data blocks for a particu-
lar word or phrase, identify where in the reconstructed con-
tiguous data blocks the particular word or phrase occurred,
and/or count the occurrences of the particular word or phrase
on the reconstructed contiguous data blocks. The DST execu-
tion unit continues in a similar manner for the encoded data
slices of other partitions in slice grouping 1. Note that with
using the unity matrix error encoding scheme previously
discussed, if the encoded data slices of contiguous data are
uncorrupted, the decoding of them is a relatively straightfor-
ward process of extracting the data.

If, however, an encoded data slice of contiguous data is
corrupted (or missing), it can be rebuilt by accessing other
DST execution units that are storing the other encoded data
slices of the set of encoded data slices of the corrupted
encoded data slice. In this instance, the DST execution unit
having the corrupted encoded data slices retrieves at least
three encoded data slices (of contiguous data and of error
coding data) in the set from the other DST execution units
(recall for this example, the pillar width is 5 and the decode
threshold is 3). The DST execution unit decodes the retrieved
data slices using the DS error encoding parameters to recap-
ture the corresponding data segment. The DST execution unit
then re-encodes the data segment using the DS error encoding
parameters to rebuild the corrupted encoded data slice. Once
the encoded data slice is rebuilt, the DST execution unit
functions as previously described.

FIG. 13 is a schematic block diagram of an embodiment of
an inbound distributed storage and/or task (DST) processing
section 82 of a DST client module coupled to DST execution
units of a distributed storage and task network (DSTN) mod-
ule via a network 24. The inbound DST processing section 82
includes a de-grouping module 180, a DS (dispersed storage)
error decoding module 182, a data de-partitioning module
184, a control module 186, and a distributed task control
module 188. Note that the control module 186 and/or the
distributed task control module 188 may be separate modules
from corresponding ones of outbound DST processing sec-
tion or may be the same modules.

In an example of operation, the DST execution units have
completed execution of corresponding partial tasks on the
corresponding slice groupings to produce partial results 102.
The inbound DST processing section 82 receives the partial
results 102 via the distributed task control module 188. The
inbound DST processing section 82 then processes the partial
results 102 to produce a final result, or results 104. For
example, if the task was to find a specific word or phrase
within data, the partial results 102 indicate where in each of
the prescribed portions of the data the corresponding DST
execution units found the specific word or phrase. The dis-
tributed task control module 188 combines the individual
partial results 102 for the corresponding portions of the data
into a final result 104 for the data as a whole.

In another example of operation, the inbound DST process-
ing section 82 is retrieving stored data from the DST execu-

10

15

20

25

30

35

40

45

50

55

60

65

18

tion units (i.e., the DSTN module). In this example, the DST
execution units output encoded data slices 100 corresponding
to the data retrieval requests. The de-grouping module 180
receives retrieved slices 100 and de-groups them to produce
encoded data slices per data partition 122. The DS error
decoding module 182 decodes, in accordance with DS error
encoding parameters, the encoded data slices per data parti-
tion 122 to produce data partitions 120.

The data de-partitioning module 184 combines the data
partitions 120 into the data 92. The control module 186 con-
trols the conversion of retrieve slices 100 into the data 92
using control signals 190 to each of the modules. For instance,
the control module 186 provides de-grouping information to
the de-grouping module 180, provides the DS error encoding
parameters to the DS error decoding module 182, and pro-
vides de-partitioning information to the data de-partitioning
module 184.

FIG. 14 is a logic diagram of an example of a method that
is executable by distributed storage and task (DST) client
module regarding inbound DST processing. The method
begins at step 194 where the DST client module receives
partial results. The method continues at step 196 where the
DST client module retrieves the task corresponding to the
partial results. For example, the partial results include header
information that identifies the requesting entity, which corre-
lates to the requested task.

The method continues at step 198 where the DST client
module determines result processing information based on
the task. For example, if the task were to identify a particular
word or phrase within the data, the result processing infor-
mation would indicate to aggregate the partial results for the
corresponding portions of the data to produce the final result.
As another example, if the task were to count the occurrences
of a particular word or phrase within the data, results of
processing the information would indicate to add the partial
results to produce the final results. The method continues at
step 200 where the DST client module processes the partial
results in accordance with the result processing information
to produce the final result or results.

FIG. 15 is a diagram of an example of de-grouping selec-
tion processing of an inbound distributed storage and task
(DST) processing section of a DST client module. In general,
this is an inverse process of the grouping module of the
outbound DST processing section of FIG. 9. Accordingly, for
each data partition (e.g., partition #1), the de-grouping mod-
ule retrieves the corresponding slice grouping from the DST
execution units (EU) (e.g., DST 1-5).

As shown, DST execution unit #1 provides a first slice
grouping, which includes the first encoded slices of each of
the sets of encoded slices (e.g., encoded data slices of con-
tiguous data of data blocks 1-15); DST execution unit #2
provides a second slice grouping, which includes the second
encoded slices of each of the sets of encoded slices (e.g.,
encoded data slices of contiguous data of data blocks 16-30);
DST execution unit #3 provides a third slice grouping, which
includes the third encoded slices of each of the sets of
encoded slices (e.g., encoded data slices of contiguous data of
data blocks 31-45); DST execution unit #4 provides a fourth
slice grouping, which includes the fourth encoded slices of
each of the sets of encoded slices (e.g., first encoded data
slices of error coding (EC) data); and DST execution unit #5
provides a fifth slice grouping, which includes the fifth
encoded slices of each of the sets of encoded slices (e.g., first
encoded data slices of error coding (EC) data).

The de-grouping module de-groups the slice groupings
(e.g., received slices 100) using a de-grouping selector 180
controlled by a control signal 190 as shown in the example to

US 9,195,684 B2

19

produce a plurality of sets of encoded data slices (e.g.,
retrieved slices for a partition into sets of slices 122). Each set
corresponding to a data segment of the data partition.

FIG. 16 is a schematic block diagram of an embodiment of
a dispersed storage (DS) error decoding module 182 of an
inbound distributed storage and task (DST) processing sec-
tion. The DS error decoding module 182 includes an inverse
per slice security processing module 202, a de-slicing module
204, an error decoding module 206, an inverse segment secu-
rity module 208, a de-segmenting processing module 210,
and a control module 186.

In an example of operation, the inverse per slice security
processing module 202, when enabled by the control module
186, unsecures each encoded data slice 122 based on slice
de-security information received as control information 190
(e.g., the compliment of the slice security information dis-
cussed with reference to FIG. 6) received from the control
module 186. The slice security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC verification, etc.), and/or any other type of
digital security. For example, when the inverse per slice secu-
rity processing module 202 is enabled, it verifies integrity
information (e.g., a CRC value) of each encoded data slice
122, it decrypts each verified encoded data slice, and decom-
presses each decrypted encoded data slice to produce slice
encoded data 158. When the inverse per slice security pro-
cessing module 202 is not enabled, it passes the encoded data
slices 122 as the sliced encoded data 158 or is bypassed such
that the retrieved encoded data slices 122 are provided as the
sliced encoded data 158.

The de-slicing module 204 de-slices the sliced encoded
data 158 into encoded data segments 156 in accordance with
a pillar width of the error correction encoding parameters
received as control information 190 from the control module
186. For example, if the pillar width is five, the de-slicing
module 204 de-slices a set of five encoded data slices into an
encoded data segment 156. The error decoding module 206
decodes the encoded data segments 156 in accordance with
error correction decoding parameters received as control
information 190 from the control module 186 to produce
secure data segments 154. The error correction decoding
parameters include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an information dispersal algo-
rithm, etc.), a pillar width, a decode threshold, a read thresh-
old, a write threshold, etc. For example, the error correction
decoding parameters identify a specific error correction
encoding scheme, specify a pillar width of five, and specify a
decode threshold of three.

The inverse segment security processing module 208,
when enabled by the control module 186, unsecures the
secured data segments 154 based on segment security infor-
mation received as control information 190 from the control
module 186. The segment security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC, etc.) verification, and/or any other type of
digital security. For example, when the inverse segment secu-
rity processing module 208 is enabled, it verifies integrity
information (e.g., a CRC value) of each secure data segment
154, it decrypts each verified secured data segment, and
decompresses each decrypted secure data segment to produce
a data segment 152. When the inverse segment security pro-
cessing module 208 is not enabled, it passes the decoded data
segment 154 as the data segment 152 or is bypassed.

The de-segment processing module 210 receives the data
segments 152 and receives de-segmenting information as
control information 190 from the control module 186. The

5

10

15

20

25

30

35

40

45

50

55

60

65

20

de-segmenting information indicates how the de-segment
processing module 210 is to de-segment the data segments
152 into a data partition 120. For example, the de-segmenting
information indicates how the rows and columns of data
segments are to be rearranged to yield the data partition 120.

FIG. 17 is a diagram of an example of de-slicing and error
decoding processing of a dispersed error decoding module. A
de-slicing module 204 receives at least a decode threshold
number of encoded data slices 158 for each data segment in
accordance with control information 190 and provides
encoded data 156. In this example, a decode threshold is
three. As such, each set of encoded data slices 158 is shown to
have three encoded data slices per data segment. The de-
slicing module 204 may receive three encoded data slices per
data segment because an associated distributed storage and
task (DST) client module requested retrieving only three
encoded data slices per segment or selected three of the
retrieved encoded data slices per data segment. As shown,
which is based on the unity matrix encoding previously dis-
cussed with reference to FIG. 8, an encoded data slice may be
a data-based encoded data slice (e.g., DS1_d1&d2) or an
error code based encoded data slice (e.g., ES3_1).

An error decoding module 206 decodes the encoded data
156 of each data segment in accordance with the error cor-
rection decoding parameters of control information 190 to
produce secured segments 154. In this example, data segment
1 includes 3 rows with each row being treated as one word for
encoding. As such, data segment 1 includes three words: word
1 including data blocks d1 and d2, word 2 including data
blocks d16 and d17, and word 3 including data blocks d31 and
d32. Each of data segments 2-7 includes three words where
each word includes two data blocks. Data segment 8 includes
three words where each word includes a single data block
(e.g., d15, d30, and d45).

FIG. 18 is a diagram of an example of a de-segment pro-
cessing of an inbound distributed storage and task (DST)
processing. In this example, a de-segment processing module
210 receives data segments 152 (e.g., 1-8) and rearranges the
data blocks of the data segments into rows and columns in
accordance with de-segmenting information of control infor-
mation 190 to produce a data partition 120. Note that the
number of rows is based on the decode threshold (e.g., 3 in
this specific example) and the number of columns is based on
the number and size of the data blocks.

The de-segmenting module 210 converts the rows and col-
umns of data blocks into the data partition 120. Note that each
data block may be of the same size as other data blocks or of
a different size. In addition, the size of each data block may be
a few bytes to megabytes of data.

FIG. 19 is a diagram of an example of converting slice
groups into data 92 within an inbound distributed storage and
task (DST) processing section. As shown, the data 92 is
reconstructed from a plurality of data partitions (1-x, where
X is an integer greater than 4). Each data partition (or chunk
set of data) is decoded and re-grouped using a de-grouping
and decoding function 212 and a de-partition function 214
from slice groupings as previously discussed. For a given data
partition, the slice groupings (e.g., at least a decode threshold
per data segment of encoded data slices) are received from
DST execution units. From data partition to data partition, the
ordering of the slice groupings received from the DST execu-
tion units may vary as discussed with reference to FIG. 10.

FIG. 20 is a diagram of an example of a distributed storage
and/or retrieval within the distributed computing system. The
distributed computing system includes a plurality of distrib-
uted storage and/or task (DST) processing client modules 34
(one shown) coupled to a distributed storage and/or task pro-

US 9,195,684 B2

21

cessing network (DSTN) module, or multiple DSTN mod-
ules, via a network 24. The DST client module 34 includes an
outbound DST processing section 80 and an inbound DST
processing section 82. The DSTN module includes a plurality
of DST execution units. Each DST execution unit includes a
controller 86, memory 88, one or more distributed task (DT)
execution modules 90, and a DST client module 34.

In an example of data storage, the DST client module 34
has data 92 that it desires to store in the DSTN module. The
data 92 may be a file (e.g., video, audio, text, graphics, etc.),
a data object, a data block, an update to a file, an update to a
data block, etc. In this instance, the outbound DST processing
module 80 converts the data 92 into encoded data slices 216 as
will be further described with reference to FIGS. 21-23. The
outbound DST processing module 80 sends, via the network
24, to the DST execution units for storage as further described
with reference to FIG. 24.

In an example of data retrieval, the DST client module 34
issues a retrieve request to the DST execution units for the
desired data 92. The retrieve request may address each DST
executions units storing encoded data slices of the desired
data, address a decode threshold number of DST execution
units, address a read threshold number of DST execution
units, or address some other number of DST execution units.
Inresponse to the request, each addressed DST execution unit
retrieves its encoded data slices 100 of the desired data and
sends them to the inbound DST processing section 82, via the
network 24.

When, for each data segment, the inbound DST processing
section 82 receives at least a decode threshold number of
encoded data slices 100, it converts the encoded data slices
100 into a data segment. The inbound DST processing section
82 aggregates the data segments to produce the retrieved data
92

FIG. 21 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) processing
section 80 of a DST client module coupled to a distributed
storage and task network (DSTN) module (e.g., a plurality of
DST execution units) via a network 24. The outbound DST
processing section 80 includes a data partitioning module
110, a dispersed storage (DS) error encoding module 112, a
grouping selector module 114, a control module 116, and a
distributed task control module 118.

In an example of operation, the data partitioning module
110 is by-passed such that data 92 is provided directly to the
DS error encoding module 112. The control module 116
coordinates the by-passing of the data partitioning module
110 by outputting a bypass 220 message to the data partition-
ing module 110.

The DS error encoding module 112 receives the data 92 in
a serial manner, a parallel manner, and/or a combination
thereof. The DS error encoding module 112 DS error encodes
the data in accordance with control information 160 from the
control module 116 to produce encoded data slices 218. The
DS error encoding includes segmenting the data 92 into data
segments, segment security processing (e.g., encryption,
compression, watermarking, integrity check (e.g., CRC,
etc.)), error encoding, slicing, and/or per slice security pro-
cessing (e.g., encryption, compression, watermarking, integ-
rity check (e.g., CRC, etc.)). The control information 160
indicates which steps of the DS error encoding are active for
the data 92 and, for active steps, indicates the parameters for
the step. For example, the control information 160 indicates
that the error encoding is active and includes error encoding
parameters (e.g., pillar width, decode threshold, write thresh-
old, read threshold, type of error encoding, etc.).

10

15

20

25

30

35

40

45

50

55

60

65

22

The grouping selector module 114 groups the encoded
slices 218 of the data segments into pillars of slices 216. The
number of pillars corresponds to the pillar width of the DS
error encoding parameters. In this example, the distributed
task control module 118 facilitates the storage request.

FIG. 22 is a schematic block diagram of an example of a
dispersed storage (DS) error encoding module 112 for the
example of FIG. 21. The DS error encoding module 112
includes a segment processing module 142, a segment secu-
rity processing module 144, an error encoding module 146, a
slicing module 148, and a per slice security processing mod-
ule 150. Each of these modules is coupled to a control module
116 to receive control information 160 therefrom.

In an example of operation, the segment processing mod-
ule 142 receives data 92 and receives segmenting information
as control information 160 from the control module 116. The
segmenting information indicates how the segment process-
ing module is to segment the data. For example, the segment-
ing information indicates the size of each data segment. The
segment processing module 142 segments the data 92 into
data segments 152 in accordance with the segmenting infor-
mation.

The segment security processing module 144, when
enabled by the control module 116, secures the data segments
152 based on segment security information received as con-
trol information 160 from the control module 116. The seg-
ment security information includes data compression,
encryption, watermarking, integrity check (e.g., CRC, etc.),
and/or any other type of digital security. For example, when
the segment security processing module 144 is enabled, it
compresses a data segment 152, encrypts the compressed data
segment, and generates a CRC value for the encrypted data
segment to produce a secure data segment. When the segment
security processing module 144 is not enabled, it passes the
data segments 152 to the error encoding module 146 or is
bypassed such that the data segments 152 are provided to the
error encoding module 146.

The error encoding module 146 encodes the secure data
segments in accordance with error correction encoding
parameters received as control information 160 from the con-
trol module 116. The error correction encoding parameters
include identifying an error correction encoding scheme
(e.g., forward error correction algorithm, a Reed-Solomon
based algorithm, an information dispersal algorithm, etc.), a
pillar width, a decode threshold, a read threshold, a write
threshold, etc. For example, the error correction encoding
parameters identify a specific error correction encoding
scheme, specifies a pillar width of five, and specifies a decode
threshold of three. From these parameters, the error encoding
module 146 encodes a data segment to produce an encoded
data segment.

The slicing module 148 slices the encoded data segment in
accordance with a pillar width of the error correction encod-
ing parameters. For example, if the pillar width is five, the
slicing module slices an encoded data segment into a set of
five encoded data slices. As such, for a plurality of data
segments, the slicing module 148 outputs a plurality of sets of
encoded data slices as shown within encoding and slicing
function 222 as described.

The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice based on slice security information received as
control information 160 from the control module 116. The
slice security information includes data compression, encryp-
tion, watermarking, integrity check (e.g., CRC, etc.), and/or
any other type of digital security. For example, when the per
slice security processing module 150 is enabled, it may com-

US 9,195,684 B2

23

press an encoded data slice, encrypt the compressed encoded
data slice, and generate a CRC value for the encrypted
encoded data slice to produce a secure encoded data slice
tweaking. When the per slice security processing module 150
is not enabled, it passes the encoded data slices or is bypassed
such that the encoded data slices 218 are the output of the DS
error encoding module 112.

FIG. 23 is a diagram of an example of converting data 92
into pillar slice groups utilizing encoding, slicing and pillar
grouping function 224 for storage in memory of a distributed
storage and task network (DSTN) module. As previously
discussed the data 92 is encoded and sliced into a plurality of
sets of encoded data slices; one set per data segment. The
grouping selection module organizes the sets of encoded data
slices into pillars of data slices. In this example, the DS error
encoding parameters include a pillar width of 5 and a decode
threshold of 3. As such, for each data segment, 5 encoded data
slices are created.

The grouping selection module takes the first encoded data
slice of each of the sets and forms a first pillar, which may be
sent to the first DST execution unit. Similarly, the grouping
selection module creates the second pillar from the second
slices of the sets; the third pillar from the third slices of the
sets; the fourth pillar from the fourth slices of the sets; and the
fifth pillar from the fifth slices of the set.

FIG. 24 is a schematic block diagram of an embodiment of
a distributed storage and/or task (DST) execution unit that
includes an interface 169, a controller 86, memory 88, one or
more distributed task (DT) execution modules 90, and a DST
client module 34. A computing core 26 may be utilized to
implement the one or more DT execution modules 90 and the
DST client module 34. The memory 88 is of sufficient size to
store a significant number of encoded data slices (e.g., thou-
sands of slices to hundreds-of-millions of slices) and may
include one or more hard drives and/or one or more solid-state
memory devices (e.g., flash memory, DRAM, etc.).

In an example of storing a pillar of slices 216, the DST
executionunit receives, via interface 169, a pillar of slices 216
(e.g., pillar #1 slices). The memory 88 stores the encoded data
slices 216 of the pillar of slices in accordance with memory
control information 174 it receives from the controller 86.
The controller 86 (e.g., a processing module, a CPU, etc.)
generates the memory control information 174 based on dis-
tributed storage information (e.g., user information (e.g., user
1D, distributed storage permissions, data access permission,
etc.), vaultinformation (e.g., virtual memory assigned to user,
user group, etc.), etc.). Similarly, when retrieving slices, the
DST execution unit receives, via interface 169, a slice
retrieval request. The memory 88 retrieves the slice in accor-
dance with memory control information 174 it receives from
the controller 86. The memory 88 outputs the slice 100, via
the interface 169, to a requesting entity.

FIG. 25 is a schematic block diagram of an example of
operation of an inbound distributed storage and/or task (DST)
processing section 82 for retrieving dispersed error encoded
data 92. The inbound DST processing section 82 includes a
de-grouping module 180, a dispersed storage (DS) error
decoding module 182, a data de-partitioning module 184, a
control module 186, and a distributed task control module
188. Note that the control module 186 and/or the distributed
task control module 188 may be separate modules from cor-
responding ones of an outbound DST processing section or
may be the same modules.

In an example of operation, the inbound DST processing
section 82 is retrieving stored data 92 from the DST execution
units (i.e., the DSTN module). In this example, the DST
execution units output encoded data slices corresponding to

10

15

20

25

30

35

40

45

50

55

60

65

24

data retrieval requests from the distributed task control mod-
ule 188. The de-grouping module 180 receives pillars of
slices 100 and de-groups them in accordance with control
information 190 from the control module 186 to produce sets
of encoded data slices 218. The DS error decoding module
182 decodes, in accordance with the DS error encoding
parameters received as control information 190 from the con-
trol module 186, each set of encoded data slices 218 to pro-
duce data segments, which are aggregated into retrieved data
92. The data de-partitioning module 184 is by-passed in this
operational mode via a bypass signal 226 of control informa-
tion 190 from the control module 186.

FIG. 26 is a schematic block diagram of an embodiment of
a dispersed storage (DS) error decoding module 182 of an
inbound distributed storage and task (DST) processing sec-
tion. The DS error decoding module 182 includes an inverse
per slice security processing module 202, a de-slicing module
204, an error decoding module 206, an inverse segment secu-
rity module 208, and a de-segmenting processing module
210. The dispersed error decoding module 182 is operable to
de-slice and decode encoded slices per data segment 218
utilizing a de-slicing and decoding function 228 to produce a
plurality of data segments that are de-segmented utilizing a
de-segment function 230 to recover data 92.

In an example of operation, the inverse per slice security
processing module 202, when enabled by the control module
186 via control information 190, unsecures each encoded data
slice 218 based on slice de-security information (e.g., the
compliment of the slice security information discussed with
reference to FIG. 6) received as control information 190 from
the control module 186. The slice de-security information
includes data decompression, decryption, de-watermarking,
integrity check (e.g., CRC verification, etc.), and/or any other
type of digital security. For example, when the inverse per
slice security processing module 202 is enabled, it verifies
integrity information (e.g., a CRC value) of each encoded
data slice 218, it decrypts each verified encoded data slice,
and decompresses each decrypted encoded data slice to pro-
duce slice encoded data. When the inverse per slice security
processing module 202 is not enabled, it passes the encoded
data slices 218 as the sliced encoded data or is bypassed such
that the retrieved encoded data slices 218 are provided as the
sliced encoded data.

The de-slicing module 204 de-slices the sliced encoded
data into encoded data segments in accordance with a pillar
width of the error correction encoding parameters received as
control information 190 from a control module 186. For
example, if the pillar width is five, the de-slicing module
de-slices a set of five encoded data slices into an encoded data
segment. Alternatively, the encoded data segment may
include just three encoded data slices (e.g., when the decode
threshold is 3).

The error decoding module 206 decodes the encoded data
segments in accordance with error correction decoding
parameters received as control information 190 from the con-
trol module 186 to produce secure data segments. The error
correction decoding parameters include identifying an error
correction encoding scheme (e.g., forward error correction
algorithm, a Reed-Solomon based algorithm, an information
dispersal algorithm, etc.), a pillar width, a decode threshold,
aread threshold, a write threshold, etc. For example, the error
correction decoding parameters identify a specific error cor-
rection encoding scheme, specify a pillar width of five, and
specify a decode threshold of three.

The inverse segment security processing module 208,
when enabled by the control module 186, unsecures the
secured data segments based on segment security information

US 9,195,684 B2

25

received as control information 190 from the control module
186. The segment security information includes data decom-
pression, decryption, de-watermarking, integrity check (e.g.,
CRC, etc.) verification, and/or any other type of digital secu-
rity. For example, when the inverse segment security process-
ing module is enabled, it verifies integrity information (e.g., a
CRC value) of each secure data segment, it decrypts each
verified secured data segment, and decompresses each
decrypted secure data segment to produce a data segment
152. When the inverse segment security processing module
208 is not enabled, it passes the decoded data segment 152 as
the data segment or is bypassed. The de-segmenting process-
ing module 210 aggregates the data segments 152 into the
data 92 in accordance with control information 190 from the
control module 186.

FIG. 27 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module that includes a plurality of distributed storage and
task (DST) execution units (#1 through #n, where, for
example, n is an integer greater than or equal to three). Each
of the DST execution units includes a DST client module 34,
a controller 86, one or more DT (distributed task) execution
modules 90, and memory 88.

Inthis example, the DSTN module stores, in the memory of
the DST execution units, a plurality of DS (dispersed storage)
encoded data (e.g., 1 through n, where n is an integer greater
than or equal to two) and stores a plurality of DS encoded task
codes (e.g., 1 through k, where k is an integer greater than or
equal to two). The DS encoded data may be encoded in
accordance with one or more examples described with refer-
ence to FIGS. 3-19 (e.g., organized in slice groupings) or
encoded in accordance with one or more examples described
with reference to FIGS. 20-26 (e.g., organized in pillar
groups). The data that is encoded into the DS encoded data
may be of any size and/or of any content. For example, the
data may be one or more digital books, a copy of a company’s
emails, a large-scale Internet search, a video security file, one
or more entertainment video files (e.g., television programs,
movies, etc.), data files, and/or any other large amount of data
(e.g., greater than a few Terra-Bytes).

The tasks that are encoded into the DS encoded task code
may be a simple function (e.g., a mathematical function, a
logic function, an identify function, a find function, a search
engine function, a replace function, etc.), a complex function
(e.g., compression, human and/or computer language trans-
lation, text-to-voice conversion, voice-to-text conversion,
etc.), multiple simple and/or complex functions, one or more
algorithms, one or more applications, etc. The tasks may be
encoded into the DS encoded task code in accordance with
one or more examples described with reference to FIGS. 3-19
(e.g., organized in slice groupings) or encoded in accordance
with one or more examples described with reference to FIGS.
20-26 (e.g., organized in pillar groups).

In an example of operation, a DST client module of a user
device orof'a DST processing unit issues a DST request to the
DSTN module. The DST request may include a request to
retrieve stored data, or a portion thereof, may include a
request to store data that is included with the DST request,
may include a request to perform one or more tasks on stored
data, may include a request to perform one or more tasks on
data included with the DST request, etc. In the cases where
the DST request includes a request to store data or to retrieve
data, the client module and/or the DSTN module processes
the request as previously discussed with reference to one or
more of FIGS. 3-19 (e.g., slice groupings) and/or 20-26 (e.g.,
pillar groupings). In the case where the DST request includes
a request to perform one or more tasks on data included with

15

40

45

26
the DST request, the DST client module and/or the DSTN
module process the DST request as previously discussed with
reference to one or more of FIGS. 3-19.

In the case where the DST request includes a request to
perform one or more tasks on stored data, the DST client
module and/or the DSTN module processes the DST request
as will be described with reference to one or more of FIGS.
28-39. In general, the DST client module identifies data and
one or more tasks for the DSTN module to execute upon the
identified data. The DST request may be for a one-time execu-
tion of the task or for an on-going execution of the task. As an
example of the latter, as a company generates daily emails, the
DST request may be to daily search new emails for inappro-
priate content and, if found, record the content, the email
sender(s), the email recipient(s), email routing information,
notify human resources of the identified email, etc.

FIG. 28 is a schematic block diagram of an example of a
distributed computing system performing tasks on stored
data. In this example, two distributed storage and task (DST)
client modules 1-2 are shown: the first may be associated with
a user device and the second may be associated with a DST
processing unit or a high priority user device (e.g., high pri-
ority clearance user, system administrator, etc.). Each DST
client module includes a list of stored data 234 and a list of
tasks codes 236. The list of stored data 234 includes one or
more entries of data identifying information, where each
entry identifies data stored in the DSTN module 22. The data
identifying information (e.g., data ID) includes one or more
of'adatafile name, a data file directory listing, DSTN address-
ing information of the data, a data object identifier, etc. The
list of tasks 236 includes one or more entries of task code
identifying information, when each entry identifies task
codes stored in the DSTN module 22. The task code identi-
fying information (e.g., task ID) includes one or more of a
task file name, a task file directory listing, DSTN addressing
information of the task, another type of identifier to identify
the task, etc.

As shown, the list of data 234 and the list of tasks 236 are
each smaller in number of entries for the first DST client
module than the corresponding lists of the second DST client
module. This may occur because the user device associated
with the first DST client module has fewer privileges in the
distributed computing system than the device associated with
the second DST client module. Alternatively, this may occur
because the user device associated with the first DST client
module serves fewer users than the device associated with the
second DST client module and is restricted by the distributed
computing system accordingly. As yet another alternative,
this may occur through no restraints by the distributed com-
puting system, it just occurred because the operator of the
user device associated with the first DST client module has
selected fewer data and/or fewer tasks than the operator of the
device associated with the second DST client module.

In an example of operation, the first DST client module
selects one or more data entries 238 and one or more tasks 240
from its respective lists (e.g., selected data ID and selected
task ID). The first DST client module sends its selections to a
task distribution module 232. The task distribution module
232 may be within a stand-alone device of the distributed
computing system, may be within the user device that con-
tains the first DST client module, or may be within the DSTN
module 22.

Regardless of the task distribution module’s location, it
generates DST allocation information 242 from the selected
task ID 240 and the selected data ID 238. The DST allocation
information 242 includes data partitioning information, task
execution information, and/or intermediate result informa-

US 9,195,684 B2

27
tion. The task distribution module 232 sends the DST alloca-
tion information 242 to the DSTN module 22. Note that one
or more examples of the DST allocation information will be
discussed with reference to one or more of FIGS. 29-39.

The DSTN module 22 interprets the DST allocation infor-
mation 242 to identify the stored DS encoded data (e.g., DS
error encoded data 2) and to identify the stored DS error
encoded task code (e.g., DS error encoded task code 1). In
addition, the DSTN module 22 interprets the DST allocation
information 242 to determine how the data is to be partitioned
and how the task is to be partitioned. The DSTN module 22
also determines whether the selected DS error encoded data
238 needs to be converted from pillar grouping to slice group-
ing. If so, the DSTN module 22 converts the selected DS error
encoded data into slice groupings and stores the slice group-
ing DS error encoded data by overwriting the pillar grouping
DS error encoded data or by storing it in a different location in
the memory of the DSTN module 22 (i.e., does not overwrite
the pillar grouping DS encoded data).

The DSTN module 22 partitions the data and the task as
indicated in the DST allocation information 242 and sends the
portions to selected DST execution units of the DSTN module
22. Each of the selected DST execution units performs its
partial task(s) on its slice groupings to produce partial results.
The DSTN module 22 collects the partial results from the
selected DST execution units and provides them, as result
information 244, to the task distribution module. The result
information 244 may be the collected partial results, one or
more final results as produced by the DSTN module 22 from
processing the partial results in accordance with the DST
allocation information 242, or one or more intermediate
results as produced by the DSTN module 22 from processing
the partial results in accordance with the DST allocation
information 242.

The task distribution module 232 receives the result infor-
mation 244 and provides one or more final results 104 there-
from to the first DST client module. The final result(s) 104
may be result information 244 or a result(s) of the task dis-
tribution module’s processing of the result information 244.

In concurrence with processing the selected task of the first
DST client module, the distributed computing system may
process the selected task(s) of the second DST client module
on the selected data(s) of the second DST client module.
Alternatively, the distributed computing system may process
the second DST client module’s request subsequent to, or
preceding, that of the first DST client module. Regardless of
the ordering and/or parallel processing of the DST client
module requests, the second DST client module provides its
selected data 238 and selected task 240 to a task distribution
module 232. If the task distribution module 232 is a separate
device of the distributed computing system or within the
DSTN module, the task distribution modules 232 coupled to
the first and second DST client modules may be the same
module. The task distribution module 232 processes the
request of the second DST client module in a similar manner
as it processed the request of the first DST client module.

FIG. 29 is a schematic block diagram of an embodiment of
a task distribution module 232 facilitating the example of
FIG. 28. The task distribution module 232 includes a plurality
oftables it uses to generate distributed storage and task (DST)
allocation information 242 for selected data and selected
tasks received from a DST client module. The tables include
data storage information 248, task storage information 250,
distributed task (DT) execution module information 252, and
task < sub-task mapping information 246.

The data storage information table 248 includes a data
identification (ID) field 260, a data size field 262, an address-

30

40

45

55

65

28

ing information field 264, distributed storage (DS) informa-
tion 266, and may further include other information regarding
the data, how it is stored, and/or how it can be processed. For
example, DS encoded data #1 has a data ID of 1, a data size of
AA (e.g., abyte size of a few terra-bytes or more), addressing
information of Addr_1_AA, and DS parameters of 3/5;
SEG_1; and SLC_1. In this example, the addressing informa-
tion may be a virtual address corresponding to the virtual
address of the first storage word (e.g., one or more bytes) of
the data and information on how to calculate the other
addresses, may be a range of virtual addresses for the storage
words of the data, physical addresses of the first storage word
or the storage words of the data, may be a list of slices names
of'the encoded data slices of the data, etc. The DS parameters
may include identity of an error encoding scheme, decode
threshold/pillar width (e.g., 3/5 for the first data entry), seg-
ment security information (e.g., SEG_1), per slice security
information (e.g., SLC_1), and/or any other information
regarding how the data was encoded into data slices.

The task storage information table 250 includes a task
identification (ID) field 268, a task size field 270, an address-
ing information field 272, distributed storage (DS) informa-
tion 274, and may further include other information regarding
the task, how it is stored, and/or how it can be used to process
data. For example, DS encoded task #2 has atask ID of 2, a
task size of XY, addressing information of Addr_2_XY, and
DS parameters of 3/5; SEG_2; and SLC_2. In this example,
the addressing information may be a virtual address corre-
sponding to the virtual address of the first storage word (e.g.,
one or more bytes) of the task and information on how to
calculate the other addresses, may be a range of virtual
addresses for the storage words of the task, physical addresses
of'the first storage word or the storage words of the task, may
be a list of slices names of the encoded slices of the task code,
etc. The DS parameters may include identity of an error
encoding scheme, decode threshold/pillar width (e.g., 3/5 for
the first data entry), segment security information (e.g.,
SEG_2), per slice security information (e.g., SLC_2), and/or
any other information regarding how the task was encoded
into encoded task slices. Note that the segment and/or the
per-slice security information include a type of encryption (if
enabled), a type of compression (if enabled), watermarking
information (if enabled), and/or an integrity check scheme (if
enabled).

The task < sub-task mapping information table 246
includes a task field 256 and a sub-task field 258. The task
field 256 identifies a task stored in the memory of a distributed
storage and task network (DSTN) module and the corre-
sponding sub-task fields 258 indicates whether the task
includes sub-tasks and, if so, how many and if any of the
sub-tasks are ordered. In this example, the task < sub-task
mapping information table 246 includes an entry for each task
stored in memory of the DSTN module (e.g., task 1 through
task k). In particular, this example indicates that task 1
includes 7 sub-tasks; task 2 does not include sub-tasks, and
task k includes r number of sub-tasks (where r is an integer
greater than or equal to two).

The DT execution module table 252 includes a DST execu-
tion unit ID field 276, a DT execution module ID field 278,
and a DT execution module capabilities field 280. The DST
execution unit ID field 276 includes the identity of DST units
in the DSTN module. The DT execution module ID field 278
includes the identity of each DT execution unit in each DST
unit. For example, DST unit 1 includes three DT executions
modules (e.g., 1_1,1_2, and 1_3). The DT execution capa-
bilities field 280 includes identity of the capabilities of the
corresponding DT execution unit. For example, DT execution

US 9,195,684 B2

29

module 1_1 includes capabilities X, where X includes one or
more of MIPS capabilities, processing resources (e.g., quan-
tity and capability of microprocessors, CPUs, digital signal
processors, co-processor, microcontrollers, arithmetic logic
circuitry, and/or any other analog and/or digital processing
circuitry), availability of the processing resources, memory
information (e.g., type, size, availability, etc.), and/or any
information germane to executing one or more tasks.

From these tables, the task distribution module 232 gener-
ates the DST allocation information 242 to indicate where the
data is stored, how to partition the data, where the task is
stored, how to partition the task, which DT execution units
should perform which partial task on which data partitions,
where and how intermediate results are to be stored, etc. If
multiple tasks are being performed on the same data or dif-
ferent data, the task distribution module factors such infor-
mation into its generation of the DST allocation information.

FIG. 30 is a diagram of a specific example of a distributed
computing system performing tasks on stored data as a task
flow 318. In this example, selected data 92 is data 2 and
selected tasks are tasks 1, 2, and 3. Task 1 corresponds to
analyzing translation of data from one language to another
(e.g., human language or computer language); task 2 corre-
sponds to finding specific words and/or phrases in the data;
and task 3 corresponds to finding specific translated words
and/or phrases in translated data.

In this example, task 1 includes 7 sub-tasks: task 1_1—
identify non-words (non-ordered); task 1_2—identify unique
words (non-ordered); task 1_3—translate (non-ordered); task
1_4—translate back (ordered aftertask 1_3); task 1_5—com-
pare to ID errors (ordered after task 1-4); task 1_6—deter-
mine non-word translation errors (ordered after task 1_5 and
1_1); and task 1_7—determine correct translations (ordered
after 1_5 and 1_2). The sub-task further indicates whether
they are an ordered task (i.e., are dependent on the outcome of
another task) or non-order (i.e., are independent of the out-
come of another task). Task 2 does not include sub-tasks and
task 3 includes two sub-tasks: task 3_1 translate; and task 3_2
find specific word or phrase in translated data.

In general, the three tasks collectively are selected to ana-
lyze data for translation accuracies, translation errors, trans-
lation anomalies, occurrence of specific words or phrases in
the data, and occurrence of specific words or phrases on the
translated data. Graphically, the data 92 is translated 306 into
translated data 282; is analyzed for specific words and/or
phrases 300 to produce a list of specific words and/or phrases
286; is analyzed for non-words 302 (e.g., not in a reference
dictionary) to produce a list of non-words 290; and is ana-
lyzed for unique words 316 included in the data 92 (i.e., how
many different words are included in the data) to produce a
list of unique words 298. Each of these tasks is independent of
each other and can therefore be processed in parallel if
desired.

The translated data 282 is analyzed (e.g., sub-task 3_2) for
specific translated words and/or phrases 304 to produce a list
of specific translated words and/or phrases 288. The trans-
lated data 282 is translated back 308 (e.g., sub-task 1_4) into
the language of'the original data to produce re-translated data
284. These two tasks are dependent on the translate task (e.g.,
task 1_3) and thus must be ordered after the translation task,
which may be in a pipelined ordering or a serial ordering. The
re-translated data 284 is then compared 310 with the original
data 92 to find words and/or phrases that did not translate (one
way and/or the other) properly to produce a list of incorrectly
translated words 294. As such, the comparing task (e.g., sub-
task 1_5) 310 is ordered after the translation 306 and re-
translation tasks 308 (e.g., sub-tasks 1_3 and 1_4).

10

15

20

25

30

35

40

45

50

55

60

65

30

The list of words incorrectly translated 294 is compared
312 to the list of non-words 290 to identify words that were
not properly translated because the words are non-words to
produce a list of errors due to non-words 292. In addition, the
list of words incorrectly translated 294 is compared 314 to the
list of unique words 298 to identify unique words that were
properly translated to produce a list of correctly translated
words 296. The comparison may also identity unique words
that were not properly translated to produce a list of unique
words that were not properly translated. Note that each list of
words (e.g., specific words and/or phrases, non-words,
unique words, translated words and/or phrases, etc.,) may
include the word and/or phrase, how many times it is used,
where in the data it is used, and/or any other information
requested regarding a word and/or phrase.

FIG. 31 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FIG.
30. As shown, DS encoded data 2 is stored as encoded data
slices across the memory (e.g., stored in memories 88) of
DST execution units 1-5; the DS encoded task code 1 (of task
1) and DS encoded task 3 are stored as encoded task slices
across the memory of DST execution units 1-5; and DS
encoded task code 2 (oftask 2) is stored as encoded task slices
across the memory of DST execution units 3-7. As indicated
in the data storage information table and the task storage
information table of FIG. 29, the respective data/task has DS
parameters of 3/5 for their decode threshold/pillar width;
hence spanning the memory of five DST execution units.

FIG. 32 is a diagram of an example of distributed storage
and task (DST) allocation information 242 for the example of
FIG. 30. The DST allocation information 242 includes data
partitioning information 320, task execution information 322,
and intermediate result information 324. The data partition-
ing information 320 includes the data identifier (ID), the
number of partitions to split the data into, address information
for each data partition, and whether the DS encoded data has
to be transformed from pillar grouping to slice grouping. The
task execution information 322 includes tabular information
having a task identification field 326, a task ordering field
328, a data partition field ID 330, and a set of DT execution
modules 332 to use for the distributed task processing per data
partition. The intermediate result information 324 includes
tabular information having a name ID field 334, an ID of the
DST execution unit assigned to process the corresponding
intermediate result 336, a scratch pad storage field 338, and an
intermediate result storage field 340.

Continuing with the example of FIG. 30, where tasks 1-3
are to be distributedly performed on data 2, the data partition-
ing information includes the ID of data 2. In addition, the task
distribution module determines whether the DS encoded data
2 is in the proper format for distributed computing (e.g., was
stored as slice groupings). If not, the task distribution module
indicates that the DS encoded data 2 format needs to be
changed from the pillar grouping format to the slice grouping
format, which will be done the by DSTN module. In addition,
the task distribution module determines the number of parti-
tions to divide the data into (e.g., 2_1 through 2_z) and
addressing information for each partition.

The task distribution module generates an entry in the task
execution information section for each sub-task to be per-
formed. For example, task 1_1 (e.g., identify non-words on
the data) has no task ordering (i.e., is independent of the
results of other sub-tasks), is to be performed on data parti-
tions 2_1 through 2_ z by DT execution modules 1_1, 2_1,
31,4 1, and 5_1. For instance, DT execution modules 1_1,
2_1,3_1,4_1,and5_1search for non-words in data partitions

US 9,195,684 B2

31

2_1 through 2z to produce task 1_1 intermediate results
(R1-1, which is a list of non-words). Task 1_2 (e.g., identity
unique words) has similar task execution information as task
1_1 to produce task 1_2 intermediate results (R1-2, which is
the list of unique words).

Task 1_3 (e.g., translate) includes task execution informa-
tion as being non-ordered (i.e., is independent), having DT
executionmodules1_1,2_1,3_1,4_1, and 5_1 translate data
partitions 2_1 through 2_4 and having DT execution modules
1.2,22,32, 4.2 and 5_2 translate data partitions 2_5
through 2_ z to produce task 1_3 intermediate results (R1-3,
which is the translated data). In this example, the data parti-
tions are grouped, where different sets of DT execution mod-
ules perform a distributed sub-task (or task) on each data
partition group, which allows for further parallel processing.

Task 1_4 (e.g., translate back) is ordered after task 1_3 and
is to be executed on task 1_3’s intermediate result (e.g.,
R1-3_1) (e.g., the translated data). DT execution modules
1.1,2 1,3.1,4_1, and 5_1 are allocated to translate back
task 1_3 intermediate result partitions R1-3_1 through
R1-3_4 and DT execution modules 1_2,2 2, 6_1,7_1, and
7_2 are allocated to translate back task 1_3 intermediate
result partitions R1-3_5 through R1-3_ zto produce task 1-4
intermediate results (R1-4, which is the translated back data).

Task 1_5 (e.g., compare data and translated data to identify
translation errors) is ordered after task 1_4 and is to be
executed on task 1_4’s intermediate results (R4-1) and on the
data. DT execution modules1_1,2_1,3_1,4 1,and 5_1 are
allocated to compare the data partitions (2_1 through 2 z)
with partitions of task 1-4 intermediate results partitions
R1-4_1 through R1-4_z to produce task 1_5 intermediate
results (R1-5, which is the list words translated incorrectly).

Task 1_6 (e.g., determine non-word translation errors) is
ordered after tasks 1_1 and 1_5 and is to be executed on tasks
1_1’s and 1_5’s intermediate results (R1-1 and R1-5). DT
executionmodules1_1,2_1,3_1,4_1, and 5_1 are allocated
to compare the partitions of task 1_1 intermediate results
(R1-1_1 through R1-1_ z) with partitions of task 1-5 inter-
mediate results partitions (R1-5_1 through R1-5_ z) to pro-
duce task 1_6 intermediate results (R1-6, which is the list
translation errors due to non-words).

Task 1_7 (e.g., determine words correctly translated) is
ordered after tasks 1_2 and 1_5 and is to be executed on tasks
1_2’s and 1_5’s intermediate results (R1-1 and R1-5). DT
execution modules1_2,2_2,3_2,4_2, and 5_2 are allocated
to compare the partitions of task 1_2 intermediate results
(R1-2_1 through R1-2 z) with partitions of task 1-5 inter-
mediate results partitions (R1-5_1 through R1-5_ z) to pro-
duce task 1_7 intermediate results (R1-7, which is the list of
correctly translated words).

Task 2 (e.g., find specific words and/or phrases) has no task
ordering (i.e., is independent of the results of other sub-tasks),
is to be performed on data partitions 2_1 through 2 zby DT
executionmodules3_1,4_1,5_1,6_1, and 7_1. For instance,
DT executionmodules3_1,4_1,5_1,6_1, and 7_1 search for
specific words and/or phrases in data partitions 2_1 through
2_ zto produce task 2 intermediate results (R2, which is a list
of specific words and/or phrases).

Task 3_2 (e.g., find specific translated words and/or
phrases) is ordered after task 1_3 (e.g., translate) is to be
performed on partitions R1-3_1 through R1-3 z by DT
executionmodules1_2,2 2,3 2.4 2, and5_2. For instance,
DT executionmodules1_2,2_2,3_2,4_2,and5_2 search for
specific translated words and/or phrases in the partitions of
the translated data (R1-3_1 through R1-3_ z) to produce task
3_2 intermediate results (R3-2, which is a list of specific
translated words and/or phrases).

20

40

45

50

55

32

For each task, the intermediate result information indicates
which DST unit is responsible for overseeing execution of the
task and, if needed, processing the partial results generated by
the set of allocated DT execution units. In addition, the inter-
mediate result information indicates a scratch pad memory
for the task and where the corresponding intermediate results
are to be stored. For example, for intermediate result R1-1
(the intermediate result of task 1_1), DST unit 1 is responsible
for overseeing execution of the task 1_1 and coordinates
storage of the intermediate result as encoded intermediate
result slices stored in memory of DST execution units 1-5. In
general, the scratch pad is for storing non-DS encoded inter-
mediate results and the intermediate result storage is for stor-
ing DS encoded intermediate results.

FIGS. 33-38 are schematic block diagrams of the distrib-
uted storage and task network (DSTN) module performing
the example of FIG. 30. In FIG. 33, the DSTN module
accesses the data 92 and partitions it into a plurality of parti-
tions 1-z in accordance with distributed storage and task
network (DST) allocation information. For each data parti-
tion, the DSTN identifies a set of its DT (distributed task)
execution modules 90 to perform the task (e.g., identify non-
words (i.e., not in a reference dictionary) within the data
partition) in accordance with the DST allocation information.
From data partition to data partition, the set of DT execution
modules 90 may be the same, different, or a combination
thereof (e.g., some data partitions use the same set while other
data partitions use different sets).

For the first data partition, the first set of DT execution
modules (e.g., 1.1, 2_1, 3_1, 4_1, and 5_1 per the DST
allocation information of FIG. 32) executes task 1_1 to pro-
duce a first partial result 102 of non-words found in the first
data partition. The second set of DT execution modules (e.g.,
1.1,2.1,3_1,4_1,and 5_1 per the DST allocation informa-
tion of FIG. 32) executes task 1_1 to produce a second partial
result 102 of non-words found in the second data partition.
The sets of DT execution modules (as per the DST allocation
information) perform task 1_1 on the data partitions until the
“z” set of DT execution modules performs task 1_1 on the
“zth” data partition to produce a “zth” partial result 102 of
non-words found in the “zth” data partition.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 1 is assigned to process the first through
“zth” partial results to produce the first intermediate result
(R1-1), which is a list of non-words found in the data. For
instance, each set of DT execution modules 90 stores its
respective partial result in the scratchpad memory of DST
execution unit 1 (which is identified in the DST allocation or
may be determined by DST execution unit 1). A processing
module of DST execution 1 is engaged to aggregate the first
through “zth” partial results to produce the first intermediate
result (e.g., R1_1). The processing module stores the first
intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the first intermediate
result (e.g., the list of non-words). To begin the encoding, the
DST client module determines whether the list of non-words
is of a sufficient size to partition (e.g., greater than a Terra-
Byte). If yes, it partitions the first intermediate result (R1-1)
into a plurality of partitions (e.g., R1-1_1 through R1-1_m).
If the first intermediate result is not of sufficient size to par-
tition, it is not partitioned.

For each partition of the first intermediate result, or for the
first intermediate result, the DST client module uses the DS
error encoding parameters of the data (e.g., DS parameters of

US 9,195,684 B2

33
data 2, which includes 3/5 decode threshold/pillar width
ratio) to produce slice groupings. The slice groupings are
stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).

In FIG. 34, the DSTN module is performing task 1_2 (e.g.,
find unique words) on the data 92. To begin, the DSTN mod-
ule accesses the data 92 and partitions it into a plurality of
partitions 1-z in accordance with the DST allocation informa-
tion or it may use the data partitions of task 1_1 if the parti-
tioning is the same. For each data partition, the DSTN iden-
tifies a set of its DT execution modules to performtask 1_2 in
accordance with the DST allocation information. From data
partition to data partition, the set of DT execution modules
may be the same, different, or a combination thereof. For the
data partitions, the allocated set of DT execution modules
executes task 1_2 to produce a partial results (e.g., 1% through
“zth”) of unique words found in the data partitions.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 1 is assigned to process the first through
“zth” partial results 102 of task 1_2 to produce the second
intermediate result (R1-2), which is a list of unique words
found in the data 92. The processing module of DST execu-
tion 1 is engaged to aggregate the first through “zth” partial
results of unique words to produce the second intermediate
result. The processing module stores the second intermediate
result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the second intermediate
result (e.g., the list of non-words). To begin the encoding, the
DST client module determines whether the list of unique
words is of a sufficient size to partition (e.g., greater than a
Terra-Byte). If yes, it partitions the second intermediate result
(R1-2) into a plurality of partitions (e.g., R1-2_1 through
R1-2_ m). Ifthe second intermediate result is not of sufficient
size to partition, it is not partitioned.

For each partition of the second intermediate result, or for
the second intermediate results, the DST client module uses
the DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).

In FIG. 35, the DSTN module is performing task 1_3 (e.g.,
translate) on the data 92. To begin, the DSTN module
accesses the data 92 and partitions it into a plurality of parti-
tions 1-z in accordance with the DST allocation information
or it may use the data partitions of task 1_1 if the partitioning
is the same. For each data partition, the DSTN identifies a set
of its DT execution modules to perform task 1_3 in accor-
dance with the DST allocation information (e.g., DT execu-
tion modules 1_1,2_1,3_1,4_1, and 5_1 translate data par-
titions 2_1 through 2_4 and DT execution modules 1_2,2_2,
3_2.4_2, and 5_2 translate data partitions 2_5 through 2_ z).
For the data partitions, the allocated set of DT execution
modules 90 executes task 1_3 to produce partial results 102
(e.g., 1% through “zth™) of translated data.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 2 is assigned to process the first through
“zth” partial results of task 1_3 to produce the third interme-
diate result (R1-3), which is translated data. The processing
module of DST execution 2 is engaged to aggregate the first
through “zth” partial results of translated data to produce the
third intermediate result. The processing module stores the

40

45

60

34

third intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 2.

DST execution unit 2 engages its DST client module to
slice grouping based DS error encode the third intermediate
result (e.g., translated data). To begin the encoding, the DST
client module partitions the third intermediate result (R1-3)
into a plurality of partitions (e.g., R1-3_1 through R1-3_ y).
For each partition of the third intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory
(e.g., allocated memory in the memories of DST execution
units 2-6 per the DST allocation information).

As is further shown in FIG. 35, the DSTN module is per-
forming task 1_4 (e.g., retranslate) on the translated data of
the third intermediate result. To begin, the DSTN module
accesses the translated data (from the scratchpad memory or
from the intermediate result memory and decodes it) and
partitions it into a plurality of partitions in accordance with
the DST allocation information. For each partition of the third
intermediate result, the DSTN identifies a set of its DT execu-
tion modules 90 to perform task 1_4 in accordance with the
DST allocation information (e.g., DT execution modules 1_1,
2.1,3_1,4_1, and 5_1 are allocated to translate back parti-
tions R1-3_1 through R1-3_4 and DT execution modules
12,2 2,6.1,7_1, and 7_2 are allocated to translate back
partitions R1-3_5 through R1-3 z). For the partitions, the
allocated set of DT execution modules executes task 1_4 to
produce partial results 102 (e.g., 1% through “zth”) of re-
translated data.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 3 is assigned to process the first through
“zth” partial results of task 1_4 to produce the fourth inter-
mediate result (R1-4), which is retranslated data. The pro-
cessing module of DST execution 3 is engaged to aggregate
the first through “zth” partial results of retranslated data to
produce the fourth intermediate result. The processing mod-
ule stores the fourth intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 3.

DST execution unit 3 engages its DST client module to
slice grouping based DS error encode the fourth intermediate
result (e.g., retranslated data). To begin the encoding, the DST
client module partitions the fourth intermediate result (R1-4)
into a plurality of partitions (e.g., R1-4_1 through R1-4_ z).
For each partition of the fourth intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory
(e.g., allocated memory in the memories of DST execution
units 3-7 per the DST allocation information).

In FIG. 36, a distributed storage and task network (DSTN)
module is performing task 1_5 (e.g., compare) on data 92 and
retranslated data of FIG. 35. To begin, the DSTN module
accesses the data 92 and partitions it into a plurality of parti-
tions in accordance with the DST allocation information or it
may use the data partitions oftask 1_1 if the partitioning is the
same. The DSTN module also accesses the retranslated data
from the scratchpad memory, or from the intermediate result
memory and decodes it, and partitions it into a plurality of
partitions in accordance with the DST allocation information.
The number of partitions of the retranslated data corresponds
to the number of partitions of the data.

US 9,195,684 B2

35

For each pair of partitions (e.g., data partition 1 and retrans-
lated data partition 1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1_5 in accordance with
the DST allocation information (e.g., DT execution modules
1.1,2.1,3_1,4_1, and 5_1). For each pair of partitions, the
allocated set of DT execution modules executes task 1_5 to
produce partial results 102 (e.g., 1 through “zth”) of a list of
incorrectly translated words and/or phrases.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 1 is assigned to process the first through
“zth” partial results of task 1_5 to produce the fifth interme-
diate result (R1-5), which is the list of incorrectly translated
words and/or phrases. In particular, the processing module of
DST execution 1 is engaged to aggregate the first through
“zth” partial results of the list of incorrectly translated words
and/or phrases to produce the fifth intermediate result. The
processing module stores the fifth intermediate result as non-
DS error encoded data in the scratchpad memory or in another
section of memory of DST execution unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the fifth intermediate
result. To begin the encoding, the DST client module parti-
tions the fifth intermediate result (R1-5) into a plurality of
partitions (e.g., R1-5_1 through R1-5_ z). For each partition
of'the fifth intermediate result, the DST client module uses the
DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5 per the
DST allocation information).

As is further shown in FIG. 36, the DSTN module is per-
forming task 1_6 (e.g., translation errors due to non-words)
on the list of incorrectly translated words and/or phrases (e.g.,
the fifth intermediate result R1-5) and the list of non-words
(e.g., the first intermediate result R1-1). To begin, the DSTN
module accesses the lists and partitions them into a corre-
sponding number of partitions.

For each pair of partitions (e.g., partition R1-1_1 and par-
tition R1-5_1), the DSTN identifies a set of its DT execution
modules 90 to perform task 1_6 in accordance with the DST
allocation information (e.g., DT execution modules 1_1,2_1,
3_1,4_1, and 5_1). For each pair of partitions, the allocated
set of DT execution modules executes task 1_6 to produce
partial results 102 (e.g., 1 through “zth™) of a list of incor-
rectly translated words and/or phrases due to non-words.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 2 is assigned to process the first through
“zth” partial results of task 1_6 to produce the sixth interme-
diate result (R1-6), which is the list of incorrectly translated
words and/or phrases due to non-words. In particular, the
processing module of DST execution 2 is engaged to aggre-
gate the first through “zth” partial results of the list of incor-
rectly translated words and/or phrases due to non-words to
produce the sixth intermediate result. The processing module
stores the sixth intermediate result as non-DS error encoded
data in the scratchpad memory or in another section of
memory of DST execution unit 2.

DST execution unit 2 engages its DST client module to
slice grouping based DS error encode the sixth intermediate
result. To begin the encoding, the DST client module parti-
tions the sixth intermediate result (R1-6) into a plurality of
partitions (e.g., R1-6_1 through R1-6_ z). For each partition
of the sixth intermediate result, the DST client module uses
the DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings

10

15

20

25

30

35

40

45

50

55

60

65

36

are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 2-6 per the
DST allocation information).

As is still further shown in FIG. 36, the DSTN module is
performing task 1_7 (e.g., correctly translated words and/or
phrases) on the list of incorrectly translated words and/or
phrases (e.g., the fifth intermediate result R1-5) and the list of
unique words (e.g., the second intermediate result R1-2). To
begin, the DSTN module accesses the lists and partitions
them into a corresponding number of partitions.

For each pair of partitions (e.g., partition R1-2_1 and par-
tition R1-5_1), the DSTN identifies a set of its DT execution
modules 90 to perform task 1_7 in accordance with the DST
allocation information (e.g., DT execution modules 1_2,2_2,
3_2,4 2, and 5_2). For each pair of partitions, the allocated
set of DT execution modules executes task 1_7 to produce
partial results 102 (e.g., 1° through “zth™) of a list of correctly
translated words and/or phrases.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 3 is assigned to process the first through
“zth” partial results of task 1_7 to produce the seventh inter-
mediate result (R1-7), which is the list of correctly translated
words and/or phrases. In particular, the processing module of
DST execution 3 is engaged to aggregate the first through
“zth” partial results of the list of correctly translated words
and/or phrases to produce the seventh intermediate result. The
processing module stores the seventh intermediate result as
non-DS error encoded data in the scratchpad memory or in
another section of memory of DST execution unit 3.

DST execution unit 3 engages its DST client module to
slice grouping based DS error encode the seventh intermedi-
ate result. To begin the encoding, the DST client module
partitions the seventh intermediate result (R1-7) into a plu-
rality of partitions (e.g., R1-7_1 through R1-7_z). For each
partition of the seventh intermediate result, the DST client
module uses the DS error encoding parameters of the data
(e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory
(e.g., allocated memory in the memories of DST execution
units 3-7 per the DST allocation information).

In FIG. 37, the distributed storage and task network
(DSTN) module is performing task 2 (e.g., find specific words
and/or phrases) on the data 92. To begin, the DSTN module
accesses the data and partitions it into a plurality of partitions
1-z in accordance with the DST allocation information or it
may use the data partitions oftask 1_1 if the partitioning is the
same. For each data partition, the DSTN identifies a set of its
DT execution modules 90 to perform task 2 in accordance
with the DST allocation information. From data partition to
data partition, the set of DT execution modules may be the
same, different, or a combination thereof. For the data parti-
tions, the allocated set of DT execution modules executes task
2 to produce partial results 102 (e.g., 1’ through “zth”) of
specific words and/or phrases found in the data partitions.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 7 is assigned to process the first through
“zth” partial results of task 2 to produce task 2 intermediate
result (R2), which is a list of specific words and/or phrases
found in the data. The processing module of DST execution 7
is engaged to aggregate the first through “zth” partial results
of specific words and/or phrases to produce the task 2 inter-
mediate result. The processing module stores the task 2 inter-
mediate result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 7.

US 9,195,684 B2

37

DST execution unit 7 engages its DST client module to
slice grouping based DS error encode the task 2 intermediate
result. To begin the encoding, the DST client module deter-
mines whether the list of specific words and/or phrases is of a
sufficient size to partition (e.g., greater than a Terra-Byte). If
yes, it partitions the task 2 intermediate result (R2) into a
plurality of partitions (e.g., R2_1 through R2 m). If the task
2 intermediate result is not of sufficient size to partition, it is
not partitioned.

For each partition of the task 2 intermediate result, or for
the task 2 intermediate results, the DST client module uses the
DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-4, and 7).

In FIG. 38, the distributed storage and task network
(DSTN) module is performing task 3 (e.g., find specific trans-
lated words and/or phrases) on the translated data (R1-3). To
begin, the DSTN module accesses the translated data (from
the scratchpad memory or from the intermediate result
memory and decodes it) and partitions it into a plurality of
partitions in accordance with the DST allocation information.
For each partition, the DSTN identifies a set of its DT execu-
tion modules to perform task 3 in accordance with the DST
allocation information. From partition to partition, the set of
DT execution modules may be the same, different, or a com-
bination thereof. For the partitions, the allocated set of DT
execution modules 90 executes task 3 to produce partial
results 102 (e.g., 1% through “zth™) of specific translated
words and/or phrases found in the data partitions.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 5 is assigned to process the first through
“zth” partial results of task 3 to produce task 3 intermediate
result (R3), which is a list of specific translated words and/or
phrases found in the translated data. In particular, the process-
ing module of DST execution 5 is engaged to aggregate the
first through “zth” partial results of specific translated words
and/or phrases to produce the task 3 intermediate result. The
processing module stores the task 3 intermediate result as
non-DS error encoded data in the scratchpad memory or in
another section of memory of DST execution unit 7.

DST execution unit 5 engages its DST client module to
slice grouping based DS error encode the task 3 intermediate
result. To begin the encoding, the DST client module deter-
mines whether the list of specific translated words and/or
phrases is of a sufficient size to partition (e.g., greater than a
Terra-Byte). If yes, it partitions the task 3 intermediate result
(R3) into a plurality of partitions (e.g., R3_1 through R3 m).
If the task 3 intermediate result is not of sufficient size to
partition, it is not partitioned.

For each partition of the task 3 intermediate result, or for
the task 3 intermediate results, the DST client module uses the
DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-4, 5, and
D.

FIG. 39 is a diagram of an example of combining result
information into final results 104 for the example of FIG. 30.
In this example, the result information includes the list of
specific words and/or phrases found in the data (task 2 inter-
mediate result), the list of specific translated words and/or
phrases found in the data (task 3 intermediate result), the list
of' non-words found in the data (task 1 first intermediate result
R1-1), the list of unique words found in the data (task 1

5

10

15

20

25

30

35

40

45

50

55

60

65

38

second intermediate result R1-2), the list of translation errors
due to non-words (task 1 sixth intermediate result R1-6), and
the list of correctly translated words and/or phrases (task 1
seventh intermediate result R1-7). The task distribution mod-
ule provides the result information to the requesting DST
client module as the results 104.

FIG. 40A is adiagram illustrating encoding of data 350 that
includes data 350 organized as a plurality of chunksets 1-N
(e.g., a data partition, or portion thereof), a chunkset data
matrix 352 for each of the plurality of chunksets 1-N that
includes a row for each chunk, a generator matrix 354 to
encode each chunkset, one data selection 356 at a time
selected by a column selector 362, to produce a correspond-
ing chunkset matrix 358 of slices, and a pillar selector 360 to
route slices of each chunkset to a corresponding distributed
storage and task execution (DST EX) unit for task processing.
A number of chunks per chunkset may be determined as a
number of required parallel DST execution units to process
parallel task processing to complete an overall task within a
desired task execution time period. A decode threshold of an
information dispersal algorithm (IDA) is determined as the
number of chunks. A pillar width number of the IDA is
determined based on one or more of the decode threshold, a
number of available DST EX units, an availability require-
ment, and a reliability requirement. For example, the decode
threshold is set at 5 when the number of chunks is 5 and the
pillar width is set at 8 in accordance with a reliability require-
ment.

A chunk size of each chunkset is determined to match a
chunk size requirement for task processing. For example, a
chunk size is determined as 4 bytes when a DST EX unit
indicates that a task processing data size limit is 4 bytes. A
chunkset size is the number of chunks multiplied by the chunk
size. For example, the chunkset is 20 bytes when the chunk
size is 4 bytes and the number of chunks is 5. A number of
chunksets N is determined as a size of the data divided by the
size of the chunkset. For example, there are 50 chunksets
(e.g., N=50) when the chunks that are 20 bytes and the size of
the data is 1000 bytes.

The generator matrix 354 is determined in accordance with
the IDA and includes a decode threshold number of columns
and awidth (e.g., pillar width) number of rows. A unity matrix
may be utilized in a top square matrix to facilitate generation
of contiguous data slices that match contiguous data of
chunks. Other rows of the generator matrix 354 facilitate
generating error coded slices (e.g., encoded data slices) for
remaining rows of the chunkset slice matrix 358.

For each chunkset, the generator matrix 354 is matrix mul-
tiplied by a column of the corresponding chunkset data matrix
(e.g., data selection 356 as selected by column selector 362)
to generate a column of the chunkset slice matrix 358 for the
corresponding chunkset. For example, row 1 of the generator
matrix 354 is multiplied by column 1 of the chunkset data
matrix 352 to produce a row 1 byte of column 1 of the
chunkset slice matrix 358, row 2 of the generator matrix 354
is multiplied by column 1 of the chunkset data matrix 352 to
produce a row 2 byte of column 1 of the chunkset slice matrix
358, etc. As another example, row 1 of the generator matrix
354 is multiplied by column 2 of the chunkset data matrix 352
to produce a row 1 byte of column 2 of the chunkset slice
matrix 358, row 2 of the generator matrix 354 is multiplied by
column 2 of the chunkset data matrix 352 to produce a row 2
byte of column 2 of the chunkset slice matrix 358, etc.

A segment may be considered as one or more columns of
the chunkset data matrix 352 and slices that correspond to the
segment are the rows of the chunkset slice matrix 358 that
correspond to the one or more columns of the chunkset data

US 9,195,684 B2

39

matrix 352. For example, row 1 column 1 of the chunkset slice
matrix 358 forms slice 1 when column 1 of the chunkset data
matrix 352 is considered as a corresponding segment. Slices
of a common row of the chunkset slice matrix 358 are of a
chunk of contiguous data of the data and share a common
pillar number and may be stored in acommon DST EX unit to
facilitate a distributed task.

The pillar selector 360 routes slices of each pillar to a DST
EX unit in accordance with a pillar selection scheme. For
example, four slices of row 1 (e.g., bytes from columns 1-4)
of the chunkset slice matrix 358 are sent to DST EX unit 1 as
a contiguous chunk of data that includes 4 bytes when the
pillar selection scheme maps pillars 1-5 (e.g., associated with
slices of contiguous data), to DST EX units 1-5 and maps
pillars 6-8 (e.g., associated with error coded slices) to DST
EX units 6-8 for a first chunkset.

To facilitate load leveling of tasks executed by the DST EX
units, the pillar selection scheme may include rotating assign-
ments of pillars to different DST EX units for each chunkset.
For example, four slices of row 8 of the chunkset slice matrix
358 are sent to DST EX unit 1 as error coded data slices that
includes 4 bytes when the pillar selection scheme maps pillar
8 (e.g., associated with error coded slices), to DST EX units 1
and maps pillars 1 (e.g., associated with slices of contiguous
data) to DST EX units 8 for another chunkset.

To facilitate execution options of partial tasks associated
with the slices, the pillar selection scheme may include send-
ing a slice to two or more DST execution units. For example,
four slices of row 1 of the chunkset slice matrix 358 are sent
to DST execution unit 1, a fourth slice of the first row of the
chunkset slice matrix 358 is sent to DST execution unit 2, four
slices of row 2 of the chunkset slice matrix 358 are sent to
DST execution unit 2, and a first slice of row 2 of the chunkset
slice matrix 358 is sent to DST execution unit 1. As such, DST
execution unit 1 may process partial tasks on the first slice of
row 2 when DST execution unit 2 is not able to execute those
tasks in a timely manner. In addition, DST execution unit 2
may process partial tasks on the fourth slice of row 1 when
DST execution unit 1 is not able to execute those tasks in a
timely manner.

FIG. 40B is a schematic block diagram of a set of distrib-
uted storage and task (DST) execution units processing slice
groupings. Each DST execution unit of the set of DST execu-
tion units includes a memory 88 and a distributed task (DT)
execution module 90. The set of DST execution units may
include a pillar width number of DST execution units utilized
to store one or more sets of slices of the slice groupings. The
memory 88 functions to store one or more slices of each slice
grouping. For example, DST execution unit 1 receives a slice
grouping that includes bytes b1-b4 as slices 1-4 and stores
bytes bl-b4 in memory 88 of DST execution unit 1. As
another example, DST executionunit 2 receives a slice group-
ing that includes bytes b5-b8 as slices 5-8 and stores bytes
b5-b8 in memory 88 of DST execution unit 2.

Each DST execution unit receives partial tasks associated
with a slice grouping and executes the partial tasks on the slice
grouping to produce partial results. The partial tasks may
include execution ordering information. The execution order-
ing information may include information with regards to
which partial task to execute first, second, etc. and may
include information with regards to which slice to process
first, second, etc. For example, the DT execution module 90 of
DST execution unit 1 loads b1 first to execute a partial task on
b1 to produce a partial result corresponding to bl and loads b2
second to execute a partial task on b2 to produce a partial
result corresponding to b2 when the execution ordering infor-
mation indicates to start with byte b1 and then process b2. As

20

25

30

40

45

40

another example, the DT execution module 90 of DST execu-
tion unit 2 loads b8 first to execute a partial task on b8 to
produce a partial result corresponding to b8 and loads b7
second to execute a partial task on b7 to produce a partial
result corresponding to b7 when the execution ordering infor-
mation indicates to start with byte b8 and then process b7.

FIG. 40C is a flowchart illustrating an example of gener-
ating a slice grouping, which include similar steps to FIG. 5.
The method begins with step 126 FIG. 5 where a processing
module (e.g., of a distributed storage and task (DST) client
module) receives data and a corresponding task. The method
continues at step 364 where the processing module selects
one or more DST execution units for the task based on a
capability level associated with each of the DST execution
units. The selecting includes one or more of determining a
number of DST execution units and selecting the number of
DST execution units based on one or more of an estimated
distributed computing loading level, a DST execution unit
capability indicator, a DST execution unit performance indi-
cator, a DST execution unit availability level indicator, a task
schedule, and a DST execution unit threshold computing
capability indicator. For example, the processing module
selects DST execution units 1-8 when DST execution unit
availability level indicators for DST execution units 1-8 com-
pares favorably to an estimated distributed computing load-
ing level. The method continues with steps 130,132, 134, and
136 of FIG. 5 where the processing module determines pro-
cessing parameters of the data based on a number of DST
execution units, determines task partitioning based on the
DST execution units (e.g., capabilities) and the processing
parameters, processes the data in accordance with the pro-
cessing parameters to produce slice groupings, and partitions
the task based on the task partitioning to produce partial tasks.

The method continues at step 366 where the processing
module determines partial task execution ordering for pairs of
DST execution units (e.g., a DST execution unit execution
pair) such that slices near a boundary between two slice
groupings are processed last. For example, the processing
module determines partial task execution ordering for a DST
execution unit 1 and a DST execution unit 2 to be executed as
partial tasks in order on slices 1, 2, 3 and 4 by DST execution
unit 1 and to execute partial tasks in order on slices 8,7, 6, 5
by DST execution unit 2 when a first slice grouping includes
slices 1-4 and a second slice grouping includes slices 5-8 such
that a border between the two slice groupings includes a
boundary between slices 4 and 5.

The method continues at step 368 where the processing
module sends the slice groupings and corresponding partial
tasks to the selected DST execution units in accordance with
the task execution ordering. For example, the processing
module sends slice 1 to DST execution unit 1 followed by
sending slice 2 to the DST execution 1 etc. As another
example, the processing module sends slice 8 to DST execu-
tion unit to be followed by sending slice 7 to DST execution
unit 2 etc.

FIG. 40D is a flowchart illustrating an example of trans-
ferring a slice. The method begins at step 370 where a pro-
cessing module (e.g., of a distributed storage and task (DST)
client module) detects a DST execution unit execution pair
with an unfavorable partial task execution level. The detec-
tion may be based on one or more of receiving a message, an
error, a query, receiving one or more partial task responses,
and comparing a number of slices that have been processed by
each DST execution unit of the pair. The processing module
detects the unfavorable partial task execution level when a
slower DST execution unit is executing partial tasks on slices
far behind execution of partial tasks by a faster DST execution

US 9,195,684 B2

41

unit by more than an execution gap threshold. For example,
the processing module detects the unfavorable partial task
execution level when the slower DST execution unit has
completed executing partial tasks on one slice in the same
time that the faster DST execution unit has completed execut-
ing partial tasks on three slices and when the execution gap
threshold is two slices.

The method continues at step 372 where the processing
module selects one or more slices stored at the slower DST
execution unit of the pair for transfer to the faster DST execu-
tion unit. The selecting includes determining a number of the
one or more slices based on one or more of a level of unfa-
vorable partial task execution level by the slower DST execu-
tion unit and identifying the one or more slices stored in the
slower DST execution unit starting nearest a boundary
between slice groupings associated with the DST execution
unit pair. For example, the processing module determines the
number to be one slice when a level of unfavorability is two
slices and processing module identifies slice 4 stored in the
slower DST execution unit as a boundary slice for transfer to
the faster DST execution unit.

The method continues at step 374 where the processing
module facilitates transferring the one or more slices and
associated partial tasks from the slower DST execution unitto
the faster DST execution unit. The facilitating includes send-
ing a transfer request for the one of more slices to the slower
DST execution unit or retrieving one or more slices from the
slower DST execution unit and sending the one or more slices
to the faster DST execution unit for storage therein. The
method continues at step 376 where the processing module
updates a directory to indicate where each slice groupings
stored. For example, the processing module updates a dis-
persed storage task pillar mapping to indicate that the one
more slices and associated tasks have been transferred from
the slower DST execution unit to the faster DST execution
unit. The processing module may update encoded data slices
stored in still other DST execution units (e.g. that store
encoded data slices) with regards to transfer of the one or
more slices.

FIG. 41A is a schematic block diagram of another set of
DST execution units processing slice groupings. Each DST
execution unit of the set of DST execution units includes a
memory 88 and a distributed task (DT) execution module 90.
The set of DST execution units may include a pillar width
number of DST execution units utilized to store one or more
sets of slices of the slice groupings. The memory 88 functions
to store one or more slices of one or more slice groupings. For
example, DST execution unit 1 receives slices of a first slice
grouping and one more overlapping slices of a second slice
grouping for storage in the memory 88 of DST execution unit
1, wherein the first slice grouping includes bytes b1-b4 as
slices 1-4 and the second slice grouping includes an overlap-
ping slice byte b5. As another example, DST execution unit 2
receives slices of the second slice grouping and one more
overlapping slices of the first slice grouping for storage in the
memory 88 of DST execution unit 2, wherein the second slice
grouping includes bytes b5-b8 as slices 5-8 and the first slice
grouping includes another overlapping slice byte b4.

Each DST execution unit receives partial tasks associated
with one or more slice groupings and executes the partial
tasks on the slice groupings to produce partial results. The
partial tasks may include execution ordering information.
The execution ordering information may include information
with regards to which partial task to execute first, second, etc.
and may include information with regards to which slice to
process first, second, etc. For example, the DT execution
module 90 of DST execution unit 1 loads b1 first to execute a

10

15

20

25

30

35

40

45

50

55

60

65

42

partial task on b1 to produce a partial result corresponding to
bl and loads b2 second to execute a partial task on b2 to
produce a partial result corresponding to b2 when the execu-
tion ordering information indicates to start with byte b1 and
then process b2. As another example, the DT execution mod-
ule 90 of DST execution unit 2 loads b8 first to execute a
partial task on b8 to produce a partial result corresponding to
b8 and loads b7 second to execute a partial task on b7 to
produce a partial result corresponding to b7 when the execu-
tion ordering information indicates to start with byte b8 and
then process b7.

Performance of the DST execution units with respect to
execution of partial tasks on the slices may be monitored to
enable reselection of a DST execution unit to execute one or
more partial tasks on one or more overlapping slices associ-
ated with another DST execution unit. For example, the DT
execution module 90 of DST execution unit 1 loads b4 to
execute a partial task associated with b4, determines that DST
execution unit 2 is slow to execute partial tasks and has not
started the execution of tasks associated with b5, indicates
that DST execution unit 1 will execute one or more partial
tasks associated with b5, loads b5 to execute the one or more
partial tasks associated with b5 to produce partial results
regarding b5, and outputs the partial results regarding b5. As
another example, the DT execution module 90 of DST execu-
tion unit 2 loads b5 to execute a partial task associated with
b5, determines that DST execution unit 1 is slow to execute
partial tasks and has not started the execution of tasks asso-
ciated with b4, indicates that DST execution unit 2 will
execute one or more partial tasks associated with b4, loads b4
to execute the one or more partial tasks associated with b4 to
produce partial results regarding b4, and outputs the partial
results regarding b4.

FIG. 41B is a schematic block diagram of another embodi-
ment of a distributed computing system that includes a com-
puting device 380 and a distributed storage and task (DST)
execution (EX) unit set 382. The DST EX unit set 382 may be
implemented utilizing one or more of a dispersed storage
network (DSN) memory, a distributed storage and task net-
work (DSTN), a DSTN module, and a plurality of storage
nodes. The DST execution unit set 382 includes a set of DST
execution units 384. Each DST execution unit 384 may be
implemented utilizing at least one of a storage server, a stor-
age unit, a dispersed storage (DS) unit, a storage module, a
memory device, a memory, a user device, a DST processing
unit, a DST processing module, the computing device 380,
and a computing device 386. The computing device 380
includes a dispersed storage (DS) module 390. The comput-
ing device 386 includes DS module 388. The computing
devices 380 and 386 may be implemented utilizing at least
one of a server, a storage unit, the DST execution unit 384, a
DS unit, a storage server, a storage module, a DS processing
unit, a DS unit, a user device, a DST processing unit, and a
DST processing module. The DS module 390 includes a
determine redundancy module 392, an encode module 394,
and an assign tasks module 396. The DS module 388 includes
a receive module 398 and a task execution module 400.

The DS module 390 is operable to manage distributed
computing of a task by the DST execution unit set 382. The
DS module 390 functions include determining data block
storage redundancy 402, encoding data 406 to produce slices,
and assigning tasks. The DS module 388 functions include
receiving a partial task and executing the partial task. With
regards to DS module 390 determining data block storage
redundancy 402, the determine redundancy module 392
determines data block storage redundancy 402 among the set
of DST execution units 382 based on processing latency

US 9,195,684 B2

43

information 404 of the set of DST execution units 382. The
data block storage redundancy 402 includes at least one of a
variety ofindications. A first indication includes an indication
of a number of encoded data blocks to include in at least one
redundant encoded data block. A second indication includes
an indication of which DST execution units 384 of the set of
DST executions units 382 are to have overlapping redundant
encoded data blocks. A third indication includes an indication
as to whether a DST execution unit 384 of the set of DST
execution units 382 is to have overlapping redundant encoded
data blocks with multiple DST execution units 384 of the set
of DST execution units 382.

The determine redundancy module 392 obtains the pro-
cessing latency information 404 from at least one of the set of
DST execution units 382, a lookup, a query, and initiating a
test, and acquiring historical records. The processing latency
information 404 of the set of DST execution units 382
includes at least one of queues for each of the set of DST
execution units 382 regarding outstanding partial tasks for
execution, historical processing times for each of the set of
DST execution units 382 regarding processing various types
of'partial tasks, network connection capabilities of each of the
set of DST execution units 382, processing resources of each
of the set of DST execution units 382, and predicted task
execution response time for each of the set of DST execution
units 382.

With regards to DS module 390 encoding data 406 to
produce slices, the encode module 394 dispersed storage
error encodes, in accordance with the data block storage
redundancy 402, a data segment of data 406 to produce a set
of encoded data slices 408, where a first encoded data slice of
the set of encoded data slices 408 includes the at least one
redundant encoded data block in common with a second
encoded data slice of the set of encoded data slices. The
encode module 394 is operable to output the set of slices 408
including facilitating sending the set of slices 408 to the set of
DST execution units 382 for storage therein. The encode
module 394 functions to dispersed storage error encode the
data segment by a series of encoding steps. A first encoding
step includes the encode module 394 arranging the data seg-
ment into a data matrix of data blocks. A second encoding
step includes the encode module 394 encoding the data
matrix with an encoding matrix to produce an encoded matrix
that includes a plurality of encoded data blocks.

A third encoding step to produce slices includes the encode
module 394 creating an initial set of encoded data slices from
the encoded matrix, where an encoded data slice of the set of
encoded data slices 408 includes a set of encoded data blocks
of the plurality of data blocks. A fourth encoding step
includes the encode module 394 identifying a first encoded
data block of a first initial encoded data slice of the initial set
of encoded data slices. A fifth encoding step includes the
encode module 394 identifying a second encoded data block
of a second initial encoded data slice of the initial set of
encoded data slices. A sixth encoding step includes the
encode module 394 appending the second encoded data block
to the first initial encoded data slice to produce the first
encoded data slice. A seventh encoding step includes the
encode module 394 appending the first encoded data block to
the second initial encoded data slice to produce the second
encoded data slice.

With regards to DS module 390 assigning tasks, the assign
tasks module 396 performs a series of assignment steps. In a
first assignment step, the assign tasks module 396 assigns a
first partial task 410 (e.g., of the task) and a first encoded
block processing order 412 to a first DST execution unit 384
of'the set of DST execution units 382 regarding processing the

5

10

15

20

25

30

35

40

45

50

55

60

65

44

first encoded data slice. The first encoded block processing
order 412 includes prioritizing processing of other encoded
data blocks of the first encoded data slice over the at least one
redundant encoded data block. The first encoded block pro-
cessing order 412 further includes determining whether the
second DST execution unit 384 is likely to process the at least
one redundant encoded data block before the first DST execu-
tion unit 384 and, when the second DST execution unit 384 is
unlikely to process the at least one redundant encoded data
block before the first DST execution unit 384, assuming, by
the first DST execution unit 384, responsibility for perform-
ing the first partial task 410 on the at least one redundant
encoded data block.

In a second assignment step, the assign tasks module 396
assigns a second partial task 414 (e.g., of the task) and a
second encoded block processing order 416 to a second DST
execution unit 384 of the set of DST execution units 382
regarding processing the second encoded data slice. The sec-
ond encoded block processing order 416 includes prioritizing
processing of other encoded data blocks of the second
encoded data slice over the at least one redundant encoded
data block. The second encoded block processing order 416
further includes determining whether the first DST execution
unit 384 is likely to process the at least one redundant encoded
data block before the second DST execution unit 384 and,
when the first DST execution unit 384 is unlikely to process
the at least one redundant encoded data block before the
second DST execution unit 384, assuming, by the second
DST execution unit 384, responsibility for performing the
second partial task 414 on the at least one redundant encoded
data block.

The first encoded block processing order 412 causes the
first DST execution unit 384 to execute the first partial task
410 on the at least one redundant encoded data block when the
processing latency of the second DST execution unit 384 is
unfavorable (e.g., slower) to the processing latency of the first
DST execution unit 384. The second encoded block process-
ing order 416 causes the second DST execution unit 384 to
execute the second partial task 414 on the at least one redun-
dant encoded data block when the processing latency of the
first DST execution unit 384 is unfavorable (e.g., slower) to
the processing latency of the second DST execution unit.

The DS module 388 functions include receiving a partial
task (e.g., the first partial task 410) and executing the partial
task. With regards to the DS module 388 receiving the partial
task, the receive module 398 receives an assigned partial task
and an encoded block processing order (e.g., the first encoded
data block processing order 412) regarding processing an
encoded data slice (e.g., the first encoded data slice), where
the data segment of data 406 is dispersed storage error
encoded in accordance with a data block storage redundancy
policy to produce the set of encoded data slices 408. The first
encoded data slice includes the at least one redundant
encoded data block in common with another encoded data
slice of the set of encoded data slices. The data block storage
redundancy policy includes at least one of a variety of indi-
cators. A first indicator includes an indication of a number of
encoded data blocks to include in the at least one redundant
encoded data block. A second indicator includes anindication
of which DST execution units 384 of the set of DST execu-
tions units 382 are to have overlapping redundant encoded
data blocks. A third indicator includes an indication as to
whether a DST execution unit 384 of the set of DST execution
units 382 is to have overlapping redundant encoded data
blocks with multiple DST execution units 384 of the set of
DST execution units 382.

US 9,195,684 B2

45

With regards to the DS module 388 executing the partial
task, the task execution module 400 performs a series of
execution steps. In a first execution step, the task execution
module 400 commences execution ofthe assigned partial task
on encoded data blocks of the encoded data slice in accor-
dance with the encoded block processing order to produce a
result 418. The execution in accordance with the encoded
block processing order includes prioritizing, by the task
execution module 400, processing of other encoded data
blocks of the first encoded data slice over the at least one
redundant encoded data block. The execution in accordance
with encoded block processing order further includes deter-
mining, by the task execution module 400, whether another
DST execution unit 384 is likely to process the at least one
redundant encoded data block before the DST execution unit
384 and, when the other DST execution unit 384 is unlikely to
process the at least one redundant encoded data block before
the DST execution unit 384, assuming, by the DST execution
unit 384, responsibility for performing the partial task on the
at least one redundant encoded data block.

In a second execution step of the series of execution steps,
the task execution module 400 executes the partial task on the
at least one redundant encoded data block when latency of
processing the other encoded data slice is unfavorable (e.g.
slower) to latency of processing the encoded data slice. The
latency of processing the encoded data slice and of the other
encoded data slice includes at least one of processing queues
for first and second DST execution units regarding outstand-
ing partial tasks for execution, where the first DST execution
unit 384 receives the encoded data slice and the second DST
execution unit 384 receives the other encoded data slice,
historical processing times for each of the first and second
execution units regarding processing various types of partial
tasks, network connection capabilities of each of the first and
second DST execution units, processing resources of each of
the first and second DST execution units, and predicted task
execution response time for each of the first and second DST
execution units. Alternatively, in the second execution step,
the task execution module 400 skips execution of the partial
task on the at least one redundant encoded data block when
the latency of processing the other encoded data slice is
favorable to the latency of processing the encoded data slice.

FIG. 41C is a flowchart illustrating an example of execut-
ing redundant tasks. The method begins at step 420 where a
processing module (e.g., of a computer to manage distributed
computing of a task) determines data block storage redun-
dancy among a set of distributed storage and task (DST)
execution units based on processing latency information of
the set of DST execution units. The data block storage redun-
dancy includes at least one of a variety of indicators. A first
indicator includes an indication of a number of encoded data
blocks to include in at least one redundant encoded data
block. A second indicator includes an indication of which
DST execution units of the set of DST executions units are to
have overlapping redundant encoded data blocks. A third
indicator includes an indication as to whether a DST execu-
tion unit of the set of DST execution units is to have overlap-
ping redundant encoded data blocks with multiple DST
execution units of the set of DST execution units. The pro-
cessing latency information of the set of DST execution units
includes at least one of queues for each of the set of DST
execution units regarding outstanding partial tasks for execu-
tion, historical processing times for each of the set of DST
execution units regarding processing various types of partial
tasks, network connection capabilities of each of the set of
DST execution units, processing resources of each of the set

25

30

40

45

55

46

of DST execution units, and predicted task execution
response time for each of the set of DST execution units.

The method continues at step 422 where the processing
module dispersed storage error encodes, in accordance with
the data block storage redundancy, a data segment of data to
produce a set of encoded data slices, where a first encoded
data slice of the set of encoded data slices includes the at least
one redundant encoded data block in common with a second
encoded data slice of the set of encoded data slices. The
dispersed storage error encoding the data segment includes a
series of encoding steps. A first encoding step includes
arranging the data segment into a data matrix of data blocks.
A second encoding step includes encoding the data matrix
with an encoding matrix to produce an encoded matrix that
includes a plurality of encoded data blocks. A third encoding
step includes creating an initial set of encoded data slices
from the encoded matrix, where an encoded data slice of the
set of encoded data slices includes a set of encoded data
blocks of the plurality of data blocks. A fourth encoding step
includes identifying a first encoded data block of a first initial
encoded data slice of the initial set of encoded data slices. A
fifth encoding step includes identifying a second encoded
data block of a second initial encoded data slice of the initial
set of encoded data slices. A sixth encoding step includes
appending the second encoded data block to the first initial
encoded data slice to produce the first encoded data slice. A
seventh encoding step includes appending the first encoded
data block to the second initial encoded data slice to produce
the second encoded data slice.

The method continues at step 424 where the processing
module assigns a first partial task and a first encoded block
processing order to a first DST execution unit of the set of
DST execution units regarding processing the first encoded
data slice. The first encoded block processing order includes
prioritizing processing of other encoded data blocks of the
first encoded data slice over the at least one redundant
encoded data block. The first encoded block processing order
further includes determining whether the second DST execu-
tion unit is likely to process the at least one redundant
encoded data block before the first DST execution unit and,
when the second DST execution unit is unlikely to process the
at least one redundant encoded data block before the first DST
execution unit, assuming, by the first DST execution unit,
responsibility for performing the first partial task on the at
least one redundant encoded data block.

The method continues at step 426 where the processing
module assigns a second partial task and a second encoded
block processing order to a second DST execution unit of the
set of DST execution units regarding processing the second
encoded data slice. The first encoded block processing order
causes the first DST execution unit to execute the first partial
task on the at least one redundant encoded data block when
the processing latency of the second DST execution unit is
unfavorable to the processing latency of the first DST execu-
tion unit. The second encoded block processing order causes
the second DST execution unit to execute the second partial
task on the at least one redundant encoded data block when
the processing latency of the first DST execution unit is unfa-
vorable to the processing latency of the second DST execu-
tion unit. The second encoded block processing order
includes prioritizing processing of other encoded data blocks
of the second encoded data slice over the at least one redun-
dant encoded data block. The second encoded block process-
ing order further includes determining whether the first DST
execution unit is likely to process the at least one redundant
encoded data block before the second DST execution unit
and, when the first DST execution unit is unlikely to process

US 9,195,684 B2

47
the at least one redundant encoded data block before the
second DST execution unit, assuming, by the second DST
execution unit, responsibility for performing the second par-
tial task on the at least one redundant encoded data block.

FIG. 41D is a flowchart illustrating an example of execut-
ing redundant tasks. The method begins at step 428 where a
processing module (e.g., of a distributed storage and task
(DST) execution unit) receives an assigned partial task and an
encoded block processing order regarding processing an
encoded data slice, where a data segment of data is dispersed
storage error encoded in accordance with a data block storage
redundancy policy to produce a set of encoded data slices.
The dispersed storage error encoding the data segment
includes a series of encoding steps. A first encoding step
includes arranging the data segment into a data matrix of data
blocks. A second encoding step includes encoding the data
matrix with an encoding matrix to produce an encoded matrix
that includes a plurality of encoded data blocks. A third
encoding step includes creating an initial set of encoded data
slices from the encoded matrix, where one of the set of
encoded data slices includes a set of encoded data blocks of
the plurality of data blocks. A fourth encoding step includes
identifying a first encoded data block of a first initial encoded
data slice of the initial set of encoded data slices. A fifth
encoding step includes identifying a second encoded data
block of a second initial encoded data slice of the initial set of
encoded data slices. A sixth encoding step includes append-
ing the second encoded data block to the first initial encoded
data slice to produce the encoded data slice. A seventh encod-
ing step includes appending the first encoded data block to the
second initial encoded data slice to produce the other encoded
data slice.

The encoded data slice includes at least one redundant
encoded data block in common with another encoded data
slice of the set of encoded data slices. The data block storage
redundancy policy includes at least one of a variety of indi-
cators. A first indicator includes an indication of a number of
encoded data blocks to include in the at least one redundant
encoded data block. A second indicator includes an indication
of which DST execution units of a set of DST executions units
are to have overlapping redundant encoded data blocks. A
third indicator includes an indication as to whether a DST
execution unit of the set of DST execution units is to have
overlapping redundant encoded data blocks with multiple
DST execution units of the set of DST execution units.

The method continues at step 430 where the processing
module commences execution of the assigned partial task on
encoded data blocks of the encoded data slice in accordance
with the encoded block processing order. The encoded block
processing order includes prioritizing, by the processing
module, processing of other encoded data blocks of the first
encoded data slice over the at least one redundant encoded
data block. The encoded block processing order further
includes determining, by the processing module, whether
another DST execution unit is likely to process the at least one
redundant encoded data block before the DST execution unit
and, when the other DST execution unit is unlikely to process
the at least one redundant encoded data block before the DST
execution unit, assuming, by the DST execution unit, respon-
sibility for performing the partial task on the at least one
redundant encoded data block.

The method continues at step 432 where the processing
module executes the partial task on the at least one redundant
encoded data block when latency of processing the other
encoded data slice is unfavorable to latency of processing the
encoded data slice. The latency of processing the encoded
data slice and of the other encoded data slice includes at least

10

15

20

25

30

35

40

45

50

55

60

65

48

one of processing queues for first and second DST execution
units regarding outstanding partial tasks for execution, where
the first DST execution unit receives the encoded data slice
and the second DST execution unit receives the other encoded
data slice, historical processing times for each of the first and
second execution units regarding processing various types of
partial tasks, network connection capabilities of each of the
first and second DST execution units, processing resources of
each of the first and second DST execution units, and pre-
dicted task execution response time for each of the first and
second DST execution units. The method continues at step
434 where the processing module skips execution of the
partial task on the at least one redundant encoded data block
when the latency of processing the other encoded data slice is
favorable to the latency of processing the encoded data slice.

FIG. 42A is a schematic block diagram of another set of
distributed storage and task (DST) execution units processing
slice groupings. Each DST execution unit of the set of DST
execution units includes a memory 88 and a distributed task
(DT) execution module 90. The set of DST execution units
may include a pillar width number of DST execution units
utilized to store one or more sets of a pillar width number of
slices of the slice groupings. The memory 88 functions to
store one or more slices of one or more slice groupings. For
example, DST execution unit 1 receives slices of a first slice
grouping for storage in memory 88 of DST execution unit 1,
where the first slice grouping includes bytes bl-b4 as slices
1-4. As another example, DST execution unit 2 receives slices
of'a second slice grouping for storage in memory 88 of DST
execution unit 2, where the second slice grouping includes
bytes b5-b8 as slices 5-8. As yet another example, DST execu-
tion unit 3 receives slices of a third slice grouping for storage
inmemory 88 of DST execution unit 3, wherein the third slice
grouping includes bytes b9-b12 as slices 9-12.

Each DST execution unit receives partial tasks associated
with one or more slice groupings and executes the partial
tasks on the slice groupings to produce partial results. The
partial tasks may include execution ordering information.
The execution ordering information may include information
with regards to which one or more partial tasks to execute
first, second, etc. and may include information with regards to
which one or more slices to process first, second, etc. For
example, the DT execution module 90 of DST execution unit
1 loads b1 first to execute a partial task on b1 to produce a
partial result corresponding to b1l and loads b2 second to
execute a partial task on b2 to produce a partial result corre-
sponding to b2 when the execution ordering information indi-
cates to start with byte b1 and then process b2. As another
example, the DT execution module 90 of DST execution unit
3 loads b12 first to execute a partial task on b12 to produce a
partial result corresponding to b12 and loads b11 second to
execute a partial task on b11 to produce a partial result cor-
responding to 11 when the execution ordering information
indicates to start with byte b12 and then process b11 etc. As
yet another example, the DT execution module 90 of DST
execution unit 2 loads slices b6 an b7 substantially simulta-
neously first to execute partial tasks on b6 and b7 to produce
partial results corresponding to b6 and b7 and loads slices b5
an b8 second to execute partial tasks on b5 and b8 to produce
partial results corresponding to b5 and b8.

Performance of the DST execution units with respect to
execution of partial tasks on the slices may be monitored to
enable reselection of a DST execution unit to execute one or
more partial tasks on one or more boundary slices associated
with another DST execution unit. For example, the DT execu-
tion module 90 of DST execution unit 2 loads b8 to execute
the partial task associated with b8, determines that DST

US 9,195,684 B2

49

execution unit 3 is slow to execute partial tasks and has not
started the execution of tasks associated with b9, indicates
that DST execution unit 2 will execute one or more partial
tasks associated with b9, obtains b9 to execute the one or
more partial tasks associated with b9 to produce partial
results regarding b9, and outputs the partial results regarding
b9. As another example, the DT execution module 90 of DST
execution unit 2 loads b5 to execute a partial task associated
with b5, determines that DST execution unit 1 is slow to
execute partial tasks and has not started the execution of tasks
associated with b4, indicates that DST execution unit 2 will
execute one or more partial tasks associated with b4, obtains
b4 to execute the one or more partial tasks associated with b4
to produce partial results regarding b4, and outputs the partial
results regarding b4.

FIG. 42B is a flowchart illustrating another example of
generating a slice grouping, which include similar steps to
FIGS. 5 and 40C. The method begins with step 126 of FIG. 5
where a processing module (e.g., of a distributed storage and
task (DST) client module) receives data and a corresponding
task. The method continues with step 364 of FIG. 40C where
the processing module selects one or more DST execution
units for the task based on a capability level associated with
each of the DST execution units. The method continues with
steps 130-136 of FIG. 5 where the processing module deter-
mines processing parameters of the data based on a number of
DST execution units, determines task partitioning based on
the DST execution units (e.g., capabilities) and the processing
parameters, processes the data in accordance with the pro-
cessing parameters to produce slice groupings, and partitions
the task based on the task partitioning to produce partial tasks.

The method continues at step 440 where the processing
module identifies two starting slices of a middle slice group-
ing of three adjacent slice groupings. The identifying includes
one or more of selecting three DST execution units corre-
sponding to the three adjacent slice groupings and selecting
the two starting slices from the middle slice grouping associ-
ated with three DST execution units. The selecting of the
three DST execution units includes one or more of identifying
three DST execution units assigned to adjacent slice group-
ings, a lookup, and a DST execution unit capability level
indicator. The selecting for two starting slices may be based
on one or more of a predetermination, the capability levels
associated with one or more of the three DST execution units,
performance levels associated with one or more of the three
DST execution units, a task loading level associated with one
or more of the three DST execution units, a lookup, and a
message. For example, the processing module selects slices 6
and 7 as the starting slices when the little slice grouping
includes slices 5-8.

The method continues at step 442 where the processing
module identifies a starting slice for each end slice grouping
at the ends of each and slice grouping. For example, the
processing module identifies slice 1 of a first slice grouping as
a starting slice for the first slice grouping and the processing
module identifies slice 12 of a third slice grouping as a start-
ing slice for the third slice grouping. The method continues at
step 444 where the processing module determines partial task
execution ordering for the three DST execution units such
that slices near two boundaries between the three slice group-
ings are processed last and four starting slices are processed
first. For example, processing module determines partial task
execution ordering to execute partial tasks in orderonslices 1,
2, 3, and 4 by a first DST execution unit, to execute partial
tasks in order on slices 12, 11, 10, and 9 by a third DST
execution unit, and to execute partial tasks in order on slices
6 and 7, and then 5 and 8 by a second DST execution unit.

10

15

20

25

30

35

40

45

50

55

60

65

50

The method continues at step 446 where the processing
module sends the slice groupings and corresponding partial
tasks to the selected DST execution units in accordance with
the task execution ordering and the four starting slices. For
example, the processing module sends slice 1 to the first DST
execution unit followed by sending slice 2 to the first DST
execution etc. through slice 4. As another example, the pro-
cessing module sends slice 12 to the third DST execution unit
followed by sending slice 11 to the third DST execution unit
etc. through slice 9. As yet another example, the processing
module sends slice 6 to the second DST execution unit fol-
lowed by sending slice 7 to the second DST execution unit
followed by sending slice 5 to the second DST execution unit
followed by sending slice 8 to the second DST execution unit.

FIG. 43 A is a schematic block diagram of a set of distrib-
uted storage and task (DST) execution unit memories 1-8.
Each DST execution unit memory ofthe set of DST execution
units memories 1-8 is associated with a corresponding DST
execution unit of a pillar width number of DST execution
units that includes at least a decode threshold number of
distributed task (DT) execution modules. Each DT execution
module functions to execute one or more partial tasks that
correspond to one or more data slices stored in a correspond-
ing DST execution unit memory of the set of DST execution
unit memories 1-8. For example, a first DT execution module
of a DST execution unit 1 executes partial tasks associated
with slices b1-b4 stored in DST execution unit 1 memory, a
second DT execution module of a DST execution unit 2
executes partial tasks associated with slices b5-b8 stored in
DST execution unit 2 memory etc. As such, DST execution
units 1-5 memories store a decode threshold number of slice
groupings for execution of partial tasks and DST execution
units 6-8 store encoded data slices (e.g., slices b1_6 through
b4_6 in DST execution unit 6 memory, slices b1_7 through
b4_7 in DST execution unit 7 memory,) slices b1_8 through
b4_8 in DST execution unit 8 memory) of remaining slices of
a pillar width number of slices when the decode threshold
number is 5 and the pillar width number is 8.

The DT execution modules may execute one or more cor-
responding partial tasks on slices of a corresponding DST
execution unit memory at varying rates of execution such that
one DT execution module may substantially finish execution
ofpartial tasks assigned to the DT execution module ahead of
other DT execution modules. For example, at time t1 pro-
cessed slices 450 includes slices bl and b2 that result from
execution of partial tasks by a DT execution module associ-
ated with the DST execution unit 1 memory, a DT execution
module associated with DST execution unit 2 memory has
completed execution of partial tasks associated with slices b5,
b6, and b7, a DT execution module associated with DST
execution unit 3 memory has completed execution of partial
tasks associated with slices b9, b10, and b11, a DT execution
module associated with DST execution unit 4 memory has
completed execution of partial tasks associated with slices
b13-b16, and a DT execution module associated with DST
execution unit 5 memory has completed execution of partial
tasks associated with slices b17-b20. In such an example,
unprocessed slices 452 that remain to be processed includes
slices b3 and b4 that are associated with the DST execution
unit 1 memory, slice b8 associated with the DST execution
unit 2 memory, slice b12 associated with the DST execution
unit 3 memory, and no slices remain to be processed associ-
ated with DST execution unit 4 memory and DST execution
unit 5 memory.

Processing of unprocessed slices 452 with respect to
execution of partial tasks on the slices may be monitored to
enable reselection of a DT execution module (e.g., a favor-

US 9,195,684 B2

51

ably executing DT execution module) to execute one or more
partial tasks on one or more unprocessed slices 452 associ-
ated with an unfavorably executing DT execution module.
For example, a DT execution module 5 associated with DST
execution unit 5 memory obtains unprocessed slice b4 for
processing by executing partial tasks associated with unproc-
essed slice b4 (e.g., rather than waiting for a DT execution
module associated with the DST execution unit 1 memory to
execute the partial tasks associated with slice b4). In the
example, DT execution module 5 may obtain the unprocessed
slice b4 by rebuilding unprocessed slice b4 based on obtain-
ing at least a decode threshold number of partial slices asso-
ciated withunprocessed slice b4 from at least a decode thresh-
old number of DST execution units (e.g., rather than
burdening DST execution unit 1 with transferring slice b4).
For instance, DT execution module 5 obtains the decode
threshold number of partial slices from DST execution units
4,5, 6, 7, and 8, decodes the decode threshold number of
partial slices to reproduce unprocessed slice b4, executes the
partial tasks associated with unprocessed slice b4 to produce
partial results with regards to slice b4, and outputs the partial
results with regards to slice b4.

FIG. 43B is a schematic block diagram of another embodi-
ment of a distributed computing system that includes a com-
puting device 454 and a distributed storage and task (DST)
execution (EX) unit set 456. The DST EX unit set 456 may be
implemented utilizing one or more of a dispersed storage
network (DSN) memory, a distributed storage and task net-
work (DSTN), a DSTN module, and a plurality of storage
nodes. The DST execution unit set 456 includes a set of DST
execution units 458. Each DST execution unit 458 may be
implemented utilizing at least one of a storage server, a stor-
age unit, a dispersed storage (DS) unit, a storage module, a
memory device, a memory, a user device, a DST processing
unit, a DST processing module, and the computing device
454. The computing device 454 includes a dispersed storage
(DS) module 460. The computing device 454 may be imple-
mented utilizing at least one of a computer, a server, a storage
unit, the DST execution unit 458, a DS unit, a storage server,
a storage module, a DS processing unit, a DS unit, a user
device, a DST processing unit, and a DST processing module.
The DS module 460 includes an ascertain module 462, an
allocate module 464, and a transfer module 466.

The DS module 460 is operable to manage distributed
computing of a task 470 by the DST execution unit set 456 on
data 468. The DS module 460 functions include ascertaining
processing speeds, allocating performance of the task, and
transferring processing responsibilities. With regards to the
DS module 460 ascertaining processing speeds, the ascertain
module 462 ascertains processing speeds 472 of the DST
execution units 458 of the set of DST execution units 456
performing like tasks (e.g., similar to the task 470, the task
470) on like data 468 (e.g., similar to the data 468, a portion
of'the data 468). The ascertain module 462 functions to ascer-
tain processing speeds 472 by at least one of determining a
number of encoded blocks processed in a given time frame on
a per DST execution unit basis and determining, on the per
DST execution unit basis, a speed at which an encoded block
for a given task is processed. For example, the ascertain
module 464 receives processing speeds 472 from each DST
execution unit 458 of the DST execution unit set 456.

With regards to the DS module 460 allocating performance
of the task 470, the allocate module 464 allocates perfor-
mance of the task 470 on a sub-set of data-based data slices to
a sub-set of the set of DST execution units 456, where a first
DST execution unit 458 of the sub-set of DST execution units
is allocated to perform a first partial task of the task 470 on a

20

30

40

45

55

52

first data-based data slice of the sub-set of data-based data
slices on an encoded block by encoded block basis. The
allocation performance may be based on one or more of a
DST execution unit capability level, a DST execution unit
availability level, a DST execution unit processing speed 472,
utilization of a round-robin approach, and using a predeter-
mined mapping. The allocate module 464 may provide allo-
cation information 476 to indicate partial task allocation.

The set of DST execution units 456 receives a set of
encoded data slices 474 that includes the sub-set of data-
based data slices and a sub-set of redundancy-based data
slices. For example, the allocate module 464 generates the set
of'encoded data slices 474 and outputs the set of encoded data
slices 474 to the DST execution unit set 456. For instance, the
allocate module 464 outputs the sub-set of data-based data
slices to the sub-set of the set of DST execution units 456 that
includes a first through a fifth DST execution unit 458 and
outputs the sub-set of redundancy-based data slices to a
remaining sixth through an eighth DST execution unit 458
when a decode threshold number is five and a pillar width is
eight.

The allocate module 464 is further operable to encode the
set of encoded data slices 474 by a series of encoding steps. In
a first encoding step, the allocate module 464 converts a data
segment of the data 468 into a data matrix that includes a
plurality of data blocks. In a second encoding step, the allo-
cate module 464 encodes the data matrix with an encoding
matrix to produce encoded blocks that includes a plurality of
data-based data blocks and a plurality of redundancy-based
data blocks. In a third encoding step, the allocate module 464
arranges the plurality of data-based data blocks into the sub-
set of data-based data slices. In a fourth encoding step, the
allocate module 464 arranges the plurality of redundancy-
based data blocks into the sub-set of redundancy-based data
slices.

With regards to the DS module 460 transferring processing
responsibilities, when, based on the ascertained processing
speeds 472, a second DST execution unit 458 of the set of
DST execution units 456 has a processing speed that is a
threshold speed greater than a processing speed 472 of the
first DST execution unit 458, the transfer module 466 per-
forms a series of transferring steps. For instance, the second
DST execution unit 458 has completed execution of all
assigned partial tasks ahead of the first DST execution unit
458. The second DST execution unit 458 is within the sub-set
ofthe set of DST execution units or the second DST execution
unit 458 is a DST execution unit of the set of DST execution
units 456 storing one of the sub-set of redundancy-based data
slices. The transfer module 466 functions to determine that
the second DST execution unit 458 has the processing speed
that is the threshold speed greater than the processing speed of
the first DST execution unit 458 by determining that the
second DST execution 458 can complete performance of the
second partial task on the second partial task on encoded
blocks of a second data-based data slice of the sub-set of
data-based data slices and on the on the at least one encoded
block before the first DST execution 458 can commence
performing the first partial task on the at least one encoded
block.

In a first transferring step of the series of transferring steps,
the transfer module 466 identifies at least one encoded block
478 of the first data-based data slice for transferring process-
ing responsibilities from the first DST execution unit 458 to
the second DST execution unit 458. The transfer module 466
functions to identify the at least one encoded block 478 by,
after the second DST execution 458 has completed perfor-
mance of the second partial task on encoded blocks of a

US 9,195,684 B2

53

second data-based data slice of the sub-set of data-based data
slices, determining how many potentially transferred
encoded blocks the second DST execution unit 458 can com-
plete performance of the second partial task on before the first
DST execution 458 can commence performing the first partial
task on the potentially transferred encoded blocks.

In a second transferring step, the transfer module 466
facilitates obtaining the at least one encoded block 478 by the
second DST execution unit 458 and performing, by the sec-
ond DST execution unit 458, a second partial task (e.g., may
include the first partial task) of the task 470 on the at least one
encoded block 478. The transfer module 466 functions to
facilitate the obtaining of the at least one encoded block 478
by a series of decoding steps. A first decoding step includes
the transfer module 466 retrieving a threshold number of
encoded blocks 480 of an encoded matrix (e.g., from adecode
threshold number of DST execution units 458). A second
decoding step includes the transfer module 466 rebuilding a
grouping of data blocks of a data matrix from the threshold
number of encoded data blocks 480. A third decoding step
includes the transfer module 466 dispersed storage error
encoding the grouping of data blocks of the data matrix to
produce a partial rebuilt first data-based data slice. A fourth
decoding step includes the transfer module 466 selecting the
at least one encoded block 478 from the partial rebuild first
data-based data slice. In addition, the transfer module outputs
the at least one encoded block 478 to the second DST execu-
tion unit 458.

Alternatively, the transfer module 466 instructs the second
DST execution unit 458 to execute the decoding steps by
outputting a transfer instruction 482 to the second DST
execution unit 458 (e.g., transfer instruction includes identi-
fication of the threshold number of DST execution units 458).
The transfer module 466 further functions to facilitate the
obtaining of the at least one encoded block 478 by instructing
the second DST execution unit to send, by the second DST
execution unit 458, a request to the first DST execution unit
458 for the at least one encoded block 478 and receive, in
response to the request, the at least one encoded block 478
from the first DST execution unit 458. For example, the
transfer module 466 determines that the first DST execution
unit 458 has sufficient processing capability to output the at
least one encoded block 478 and the transfer module 466
outputs a transfer instruction 42 that includes instructions for
the first DST execution unit 458 to obtain the at least one
encoded block 478 directly from the first DST execution unit
458.

The transfer module 466 further functions to, when, based
on the ascertained processing speeds 472, a third DST execu-
tion unit 458 of the set of DST execution units 456 has a
processing speed 472 that is the threshold speed greater than
the processing speed of the first DST execution unit 458,
identify at least two encoded blocks of the first data-based
data slice for transferring processing responsibilities from the
first DST execution unit 458 to the second DST execution unit
458 and to the third DST execution unit 458 and to facilitate
operations of the second and third DST execution units. The
operations of the second and third DST execution units
includes obtaining a first one of the at least two encoded
blocks by the second DST execution unit 458, obtaining a
second one of the at least two encoded blocks by the third
DST execution unit 458, performing, by the second DST
execution unit 458, the second partial task on the first one of
the at least two encoded blocks, and performing, by the third
DST execution unit 458, a third partial task (e.g., may be the
same as the first partial task) of the task 470 on the second one
of the at least two encoded blocks.

25

40

45

54

FIG. 43C is a flowchart illustrating another example of
processing a slice grouping. The method begins at step 486
where a processing module (e.g., a computer to manage dis-
tributed computing of a task on data) ascertains processing
speeds of distributed storage and task (DST) execution units
of'a set of DST execution units performing like tasks on like
data. The ascertaining processing speeds includes at least one
of determining a number of encoded blocks processed in a
given time frame on a per DST execution unit basis and
determining, on the per DST execution unit basis, a speed at
which an encoded block for a given task is processed. The
method continues at step 488 where the processing module
converts a data segment of the data into a data matrix that
includes a plurality of data blocks. The method continues at
step 490 where the processing module encodes the data
matrix with an encoding matrix to produce encoded blocks
that includes a plurality of data-based data blocks and a plu-
rality of redundancy-based data blocks. The method contin-
ues at step 492 where the processing module arranges the
plurality of data-based data blocks into the sub-set of data-
based data slices. The method continues at step 494 where the
processing module arranges the plurality of redundancy-
based data blocks into the sub-set of redundancy-based data
slices. In addition, the processing module may output the
sub-set of data-based data slices and the sub-set of redun-
dancy-based data slices to the set of DST execution units. The
method continues at step 496 where the set of DST execution
units receives a set of encoded data slices that includes the
sub-set of data-based data slices and the sub-set of redun-
dancy-based data slices.

The method continues at step 498 where the processing
module allocates performance of the task on the sub-set of
data-based data slices to a sub-set of the set of DST execution
units, where a first DST execution unit of the sub-set of DST
executionunits is allocated to perform a first partial task of the
task on a first data-based data slice of the sub-set of data-
based data slices on an encoded block by encoded block basis.
The method continues at step 500 where the processing mod-
ule determines whether a second DST execution unit has a
processing speed that is a threshold speed greater than a
processing speed of the first DST execution unit by determin-
ing that the second DST execution can complete performance
of the second partial task on the second partial task on
encoded blocks of a second data-based data slice of the sub-
set of data-based data slices and on the at least one encoded
block before the first DST execution can commence perform-
ing the first partial task on the at least one encoded block. The
second DST execution unit is within the sub-set of the set
DST execution units or the second DST execution unit is a
DST execution unit of the set of DST execution units storing
one of the sub-set of redundancy-based data slices. Alterna-
tively, the method branches to step 508 to identify a third DST
execution unit to assist in the execution of the task. For
example, the processing module determines to utilize the
third DST execution unit when the processing speed of the
second DST execution unit is less than an upper threshold
greater than the processing speed of the first DST execution
unit (e.g., more help required).

When, based on the ascertained processing speeds, the
second DST execution unit of the set of DST execution units
has the processing speed that is the threshold speed greater
than the processing speed of the first DST execution unit, the
method continues at step 502 where the processing module
identifies at least one encoded block of the first data-based
data slice for transferring processing responsibilities from the
first DST execution unit to the second DST execution unit.

US 9,195,684 B2

55

The identifying the at least one encoded block includes, after
the second DST execution has completed performance of the
second partial task on encoded blocks of a second data-based
data slice of the sub-set of data-based data slices, determining
how many potentially transferred encoded blocks the second
DST execution unit can complete performance on the second
partial task before the first DST execution can commence
performing the first partial task on the potentially transferred
encoded blocks.

The method continues at step 504 where the second DST
execution unit obtains the at least one encoded block. The
obtaining of the at least one encoded block includes a series of
obtaining steps. A first obtaining step includes retrieving a
threshold number of encoded blocks of an encoded matrix. A
second obtaining step includes rebuilding a grouping of data
blocks of a data matrix from the threshold number of encoded
data blocks. A third obtaining step includes dispersed storage
error encoding the grouping of data blocks of the data matrix
to produce a partially rebuilt first data-based data slice. A
fourth obtaining step includes selecting the at least one
encoded block from the partially rebuilt first data-based data
slice. Alternatively, or in addition to, the obtaining of the at
least one encoded block includes sending, by the second DST
executionunit, a request to the first DST execution unit for the
at least one encoded block and receiving, in response to the
request, the at least one encoded block from the first DST
execution unit. The method continues at step 506 where the
second DST execution unit performs a second partial task of
the task on the at least one encoded block.

When, based on the ascertained processing speeds, a third
DST execution unit of the set of DST execution units has a
processing speed that is the threshold speed greater than the
processing speed of the first DST execution unit, the method
continues at step 508 where the processing module transfers
processing responsibilities for at least two encoded blocks
from the first DST execution unit to the second DST execu-
tion unit and to the third DST execution unit. The transferring
of the processing responsibilities includes a series of trans-
ferring steps. A first transferring step includes the processing
module identifying the at least two encoded blocks of the first
data-based data slice for transferring processing responsibili-
ties from the first DST execution unit to the second DST
execution unit and to the third DST execution unit. A second
transferring step includes the second DST execution unit
obtaining a first one of the at least two encoded blocks. A third
transferring step includes the third DST execution unit
obtaining a second one of the at least two encoded blocks. A
fourth transferring step includes the second DST execution
unit performing the second partial task on the first one of the
at least two encoded blocks. A fifth transferring step includes
the third DST execution unit performing a third partial task of
the task on the second one of the at least two encoded blocks.

FIG. 44A is another diagram illustrating encoding of data
that includes data 510 organized as a plurality of chunksets
1-N (e.g., a data partition, or portion thereof), a chunkset data
matrix 512 for each of the plurality of chunksets 1-N that
includes a row for each chunk, a generator sub-matrix 514 to
encode each chunkset via a column selector 522 as a data
selection 516 to produce a corresponding chunkset slice sub-
matrix 518 of slices, a remaining generator sub-matrix 524,
and a pillar selector 520 to route generator matrix information
526 and the slices of each chunkset to a corresponding dis-
tributed storage and task execution (DST EX) unit for task
processing.

A number of chunks per chunkset is determined as a num-
ber of required parallel DST execution units to process par-
allel task processing to complete an overall task within a

20

30

35

40

45

50

55

60

65

56

desired task execution time period. A decode threshold of an
information dispersal algorithm (IDA) is determined as the
number of chunks. A pillar width number of the IDA is
determined based on one or more of the decode threshold, a
number of available DST EX units, an availability require-
ment, and a reliability requirement. For example, the decode
threshold is set at 5 when the number of chunks is 5 and the
pillar width is set at 8 in accordance with a reliability require-
ment.

A chunk size of each chunkset is determined to match a
chunk size requirement for task processing. For example, a
chunk size is determined as 4 bytes when a DST EX unit
indicates that a task processing data size limit is 4 bytes. A
chunkset size is the number of chunks multiplied by the chunk
size. For example, the chunkset is 20 bytes when the chunk
size is 4 bytes and the number of chunks is 5. A number of
chunksets N is determined as a size of the data divided by the
size of the chunkset. For example, there are 50 chunksets
(e.g., N=50) when the chunkset is 20 bytes and the size of the
data is 1000 bytes.

The generator sub-matrix 514 and remaining generator
sub-matrix 524 are determined in accordance with the IDA,
where each matrix includes a decode threshold number of
columns, the generator sub-matrix 514 includes a decode
threshold number of rows and the remaining generator sub-
matrix 524 includes the pillar width number minus the decode
threshold number of rows. A unity matrix is utilized as the
generator sub-matrix to facilitate generation of contiguous
data slices that match contiguous data of chunks. The remain-
ing generator sub-matrix 524 facilitates generating error
codedslices (e.g., encoded data slices) for additional pillars to
pillars of the chunkset slice sub-matrix 518.

For each chunkset, the generator sub-matrix 514 is matrix
multiplied by a column of the corresponding chunkset data
matrix 512 (e.g., data selection 516 as selected by the column
selector 522) to generate a column of the chunkset slice
sub-matrix 518 for the corresponding chunkset. For example,
row 1 of the generator sub-matrix 514 is multiplied by column
1 of the chunkset data matrix 512 to produce a row 1 byte of
column 1 of the chunkset slice sub-matrix 518, row 2 of the
generator sub-matrix 514 is multiplied by column 1 of the
chunkset data matrix 512 to produce a row 2 byte of column
1 of the chunkset slice sub-matrix 518, etc. As another
example, row 1 of the generator sub-matrix 514 is multiplied
by column 2 of the chunkset data matrix 512 to produce a row
1 byte of column 2 of the chunkset slice sub-matrix 518, row
2 of the generator sub-matrix 514 is multiplied by column 2 of
the chunkset data matrix 512 to produce a row 2 byte of
column 2 of the chunkset slice sub-matrix 518, etc.

A segment may be considered as one or more columns of
the chunkset data matrix 512 and slices that correspond to the
segment are the rows of the chunkset slice sub-matrix 518 that
correspond to the one or more columns of the chunkset data
matrix 512. For example, row 1 column 1 of the chunkset slice
sub-matrix 518 forms slice 1 when column 1 of the chunkset
data matrix 512 is considered as a corresponding segment.
Slices of a common row of the chunkset slice sub-matrix 518
are of a chunk of contiguous data of the data and share a
common pillar number and may be stored in a common DST
EX unit to facilitate a distributed task.

The pillar selector 520 routes slices of each pillar to a DST
EX unit in accordance with a pillar selection scheme. For
example, four slices of row 1 (e.g., bytes from columns 1-4)
of the chunkset slice sub-matrix 518 are sent to DST EX unit
1 as a contiguous chunk of data that includes 4 bytes when the
pillar selection scheme maps pillars 1-5 (e.g., associated with
slices of contiguous data), to DST EX units 1-5 and maps

US 9,195,684 B2

57
pillars 6-8 (e.g., associated with error coded slices/encoded
data slices) to DST EX units 6-8 for a first chunkset (e.g., to
be generated later as discussed with reference to FIGS. 44B
and 44C).

The pillar selector 520 further functions to route the gen-
erator matrix information 526 to DST execution units asso-
ciated with error coded slices. For example, the pillar selector
520 routes the generator matrix information 526 to DST
execution units 6-8 when DST execution units 6-8 are asso-
ciated with storing the error coded slices (e.g. pillars 5-8,
when the pillar width is 8 and the decode threshold is 5). The
generator matrix information 526 includes one or more of the
remaining generator sub-matrix 524, the generator sub-ma-
trix 514, a partial slice identifier, a locally stored slice iden-
tifier, pillar numbers associated with the decode threshold
number of DST execution units, pillar numbers associated
with the error coded slices, and DST execution unit identifiers
associated with the error coded slices.

FIG. 44B is a flowchart illustrating another example of
generating a slice grouping, which include similar steps to
FIGS. 5 and 40C. The method begins with step 126 of FIG. 5
where a processing module (e.g., of a distributed storage and
task (DST) client module) receives data and a corresponding
task. The method continues with step 364 of FIG. 40C where
the processing module selects one or more DST execution
units for the task based on a capability level associated with
each of the DST execution units. The method continues with
steps 130 and 132 of FIG. 5 where the processing module
determines processing parameters of the data based on a
number of DST execution units and determines task partition-
ing based on the DST execution units (e.g., capabilities) and
the processing parameters.

The method continues at step 528 where the processing
module partitions the data in accordance with the processing
parameters to produce a decode threshold number of slice
groupings. For example, the processing module partitions the
data into five slice groupings when the decode threshold
number is five. The method continues with step 136 of FIG. 5
where the processing module partitions the task based on the
task partitioning to produce partial tasks.

The method continues at step 530 where the processing
module contains generator matrix information. The obtaining
includes one or more of retrieving from a local memory,
retreating from a distributed storage and task network
(DSTN) module, sending a query, receiving information,
lookup, decoding a message, and a predetermination. The
method continues at step 532 where the processing module
sends the slice groupings, corresponding partial tasks, and
generator matrix to the selected DST execution.

FIG. 44C is a flowchart illustrating an example of gener-
ating a partially encoded data slice. The method begins at step
534 where a processing module (e.g., of a distributed storage
and task (DST) execution unit) receives at least one slice
grouping, corresponding partial tasks, and generator matrix
information. The method continues at step 536 where the
processing module stores the at least one slice grouping, the
corresponding partial tasks, and the generator matrix infor-
mation in a local memory. The storing may further include
initiation of execution of the corresponding partial tasks on
the at least one slice grouping. The method continues at step
538 where the processing module identifies error control DST
execution units associated with error coded slices that corre-
spond to a slice grouping of the one more slice groupings. The
identifying may be based on at least one of the generator
matrix information, a query, lookup, and receiving the iden-
tities of the error control DST execution units.

10

15

20

25

30

35

40

45

50

55

60

65

58

The method continues at step 540 where, for each error
control DST execution unit, the processing module generates
a partially encoded data slice corresponding to each slice of
each slice grouping. The generating the partially encoded
data slice includes one or more of extracting a generator
matrix from the generator matrix information (e.g., aggregat-
ing a received generator sub-matrix and a received remaining
generator sub-matrix to produce the generator matrix), reduc-
ing the generator matrix to produce a square matrix that
exclusively includes rows identified in the generator matrix
information (e.g., slice pillars associated with participating
DST execution units of a decode threshold number of units),
inverting the square matrix to produce an inverted matrix (e.g.
alternatively, may extract the inverted matrix from the gen-
erator matrix information), matrix multiplying the inverted
matrix by a corresponding slice of a slice group to produce a
vector, and matrix multiply the vector by a row of the gen-
erator matrix corresponding to the desired encoded data slice
to be partial encoded (e.g. alternatively, may extract the row
from the request), to produce the partial encoded data slice.

The method continues at step 542 where the processing
module, for each error control DST execution unit, sends the
partial encoded data slice to the error control DST execution
unit where the error control DST execution unit performs an
exclusive function on a decode threshold number of partial
encoded data slices to produce a corresponding error coded
slice for storage in memory of the error control DST execu-
tion unit.

FIG. 45 is a flowchart illustrating another example of gen-
erating a partially encoded data slice, which includes similar
steps to FIG. 44C. The method begins with steps 534 and 536
of FIG. 44C where a processing module (e.g., of a distributed
storage and task (DST) execution unit) receives at least one
slice grouping, corresponding partial tasks, and generator
matrix information and stores the at least one slice grouping,
the corresponding partial tasks, and the generator matrix
information in a local memory. The method continues at step
544 where the processing module executes partial tasks of the
corresponding partial tasks on a slice of the at least one slice
grouping.

The method continues at step 546 where the processing
module obtains partial task execution performance informa-
tion for a corresponding set of DST execution units. The
obtaining includes one or more of initiating a query, lookup,
an error message, and receiving the performance information.
The partial task execution performance information includes
one or more of execution progress versus a goal, an error level
indicator, and a storage priority level indicator (e.g., always
store the error coded slices, never store the error coded slices,
store the error coded slices when performance is favorable).

The method continues at step 548 where the processing
module determines whether to generate error coded slices
corresponding to the slice grouping based on the partial task
execution performance information. For example, the pro-
cessing module determines not to generate error coded slices
when the partial task execution performance information is
below a performance threshold and the storage priority level
indicator indicates to store the error coded slices only when
performance is favorable. The method loops back to step 544
when the processing module determines not to generate the
error coded slices. The method continues to step 538 of FIG.
44C when the processing module determines to generate the
error coded slices.

The method continues with steps 538, 540, and 542 of F1G.
44C where the processing module identifies error control
DST execution units associated with error coded slices that
correspond to a slice grouping of the one more slice group-

US 9,195,684 B2

59

ings, generates, for each error control DST execution unit, a
partial encoded data slice corresponding to each slice of each
slice grouping, and sends, for each error control DST execu-
tion unit, the partial encoded data slice to the error control
DST execution unit where the error control DST execution
unit performs an exclusive function on a decode threshold
number of partial encoded data slices to produce a corre-
sponding error coded slice for storage in memory of the error
control DST execution unit.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “operably coupled to”, “coupled to”,
and/or “coupling” includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., anitem includes, but is not limited to, a component,
an element, a circuit, and/or a module) where, for indirect
coupling, the intervening item does not modify the informa-
tion of a signal but may adjust its current level, voltage level,
and/or power level. As may further be used herein, inferred
coupling (i.e., where one element is coupled to another ele-
ment by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to”. As
may even further be used herein, the term “operable to” or
“operably coupled to” indicates that an item includes one or
more of power connections, input(s), output(s), etc., to per-
form, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, and/or “processing unit” may be a
single processing device or a plurality of processing devices.
Such a processing device may be a microprocessor, micro-
controller, digital signal processor, microcomputer, central
processing unit, field programmable gate array, program-
mable logic device, state machine, logic circuitry, analog
circuitry, digital circuitry, and/or any device that manipulates
signals (analog and/or digital) based on hard coding of the
circuitry and/or operational instructions. The processing
module, module, processing circuit, and/or processing unit
may be, or further include, memory and/or an integrated
memory element, which may be a single memory device, a
plurality of memory devices, and/or embedded circuitry of
another processing module, module, processing circuit, and/
or processing unit. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-vola-
tile memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital informa-
tion. Note that if the processing module, module, processing
circuit, and/or processing unit includes more than one pro-
cessing device, the processing devices may be centrally

20

35

40

45

50

55

60

65

60

located (e.g., directly coupled together via a wired and/or
wireless bus structure) or may be distributedly located (e.g.,
cloud computing via indirect coupling via a local area net-
work and/or a wide area network). Further note that if the
processing module, module, processing circuit, and/or pro-
cessing unit implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element may store,
and the processing module, module, processing circuit, and/
or processing unit executes, hard coded and/or operational
instructions corresponding to at least some of the steps and/or
functions illustrated in one or more of the Figures. Such a
memory device or memory element can be included in an
article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these functional
building blocks have been arbitrarily defined for convenience
of description. Alternate boundaries could be defined as long
as the certain significant functions are appropriately per-
formed. Similarly, flow diagram blocks may also have been
arbitrarily defined herein to illustrate certain significant func-
tionality. To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claimed invention. One of average skill in the art
will also recognize that the functional building blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or by discrete components,
application specific integrated circuits, processors executing
appropriate software and the like or any combination thereof.

The present invention may have also been described, at
least in part, in terms of one or more embodiments. An
embodiment of the present invention is used herein to illus-
trate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manufac-
ture, a machine, and/or of a process that embodies the present
invention may include one or more of the aspects, features,
concepts, examples, etc. described with reference to one or
more of the embodiments discussed herein. Further, from
figure to figure, the embodiments may incorporate the same
or similarly named functions, steps, modules, etc. that may
use the same or different reference numbers and, as such, the
functions, steps, modules, etc. may be the same or similar
functions, steps, modules, etc. or different ones.

While the transistors in the above described figure(s) is/are
shown as field effect transistors (FETs), as one of ordinary
skill in the art will appreciate, the transistors may be imple-
mented using any type of transistor structure including, but
not limited to, bipolar, metal oxide semiconductor field effect
transistors (MOSFET), N-well transistors, P-well transistors,
enhancement mode, depletion mode, and zero voltage thresh-
old (VT) transistors.

US 9,195,684 B2

61

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time or
discrete time, and single-ended or differential. For instance, if
a signal path is shown as a single-ended path, it also repre-
sents a differential signal path. Similarly, if a signal path is
shown as a differential path, it also represents a single-ended
signal path. While one or more particular architectures are
described herein, other architectures can likewise be imple-
mented that use one or more data buses not expressly shown,
direct connectivity between elements, and/or indirect cou-
pling between other elements as recognized by one of average
skill in the art.

The term “module” is used in the description of the various
embodiments of the present invention. A module includes a
processing module, a functional block, hardware, and/or soft-
ware stored on memory for performing one or more functions
as may be described herein. Note that, if the module is imple-
mented via hardware, the hardware may operate indepen-
dently and/or in conjunction software and/or firmware. As
used herein, a module may contain one or more sub-modules,
each of which may be one or more modules.

While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

What is claimed is:

1. A method for execution by a computer to manage dis-
tributed computing of a task, the method comprises:

determining a data block storage redundancy policy among

a set of distributed storage and task (DST) execution
units based on processing latency information of the set
of DST execution units;
dispersed storage error encoding, in accordance with the
data block storage redundancy, a data segment of data to
produce a set of encoded data slices, wherein a first
encoded data slice of the set of encoded data slices
includes a first set of encoded data blocks, a second
encoded data slice of the set of encoded data slices
includes a second set of encoded data blocks, and at least
one redundant encoded data block is included in both of
the first and second sets of encoded data blocks;

assigning a set of partial tasks to the set of DST execution
units regarding the set of encoded data slices;

assigning a first partial task of the set of partial tasks and a

first encoded data block processing order to a first DST
execution unit of the set of DST execution units regard-
ing processing the first set of encoded data blocks of the
first encoded data slice; and

assigning a second partial task of the set of partial tasks and

a second encoded data block processing order to a sec-
ond DST execution unit of the set of DST execution units
regarding processing the second set of encoded data
blocks of the second encoded data slice, wherein the first
encoded data block processing order causes the first
DST execution unit to execute the first partial task on the
atleast one redundant encoded data block when process-
ing latency of the second DST execution unit is unfavor-
ableto processing latency of the first DST execution unit
and wherein the second encoded data block processing
order causes the second DST execution unit to execute
the second partial task on the at least one redundant
encoded data block when the processing latency of the
first DST execution unit is unfavorable to the processing
latency of the second DST execution unit.

10

15

20

30

35

40

45

55

62

2. The method of claim 1, wherein the data block storage
redundancy policy comprises at least one of:

an indication of a number of encoded data blocks to include

in the at least one redundant encoded data block;

an indication of which DST execution units of the set of

DST executions units are to have overlapping redundant
encoded data blocks; and

an indication as to whether a DST execution unit of the set

of DST execution units is to have overlapping redundant
encoded data blocks with multiple DST execution units
of the set of DST execution units.

3. The method of claim 1, wherein the processing latency
information of the set of DST execution units comprises at
least one of:

queues for each of the set of DST execution units regarding

outstanding partial tasks for execution;

historical processing times for each of the set of DST

execution units regarding processing various types of
partial tasks;

network connection capabilities of each of the set of DST

execution units;

processing resources of each of the set of DST execution

units; and

predicted task execution response time for each of the set of

DST execution units.

4. The method of claim 1, wherein the dispersed storage
error encoding the data segment comprises:

arranging the data segment into a data matrix of data

blocks;

encoding the data matrix with an encoding matrix to pro-

duce an encoded matrix that includes a plurality of
encoded data blocks;
creating an initial set of encoded data slices from the
encoded matrix, wherein an encoded data slice of the set
of encoded data slices includes a set of encoded data
blocks of the plurality of encoded data blocks;

identifying a first encoded data block of a first initial
encoded data slice of the initial set of encoded data
slices;

identifying a second encoded data block of a second initial

encoded data slice of the initial set of encoded data
slices;

appending the second encoded data block to the first initial

encoded data slice to produce the first encoded data
slice; and

appending the first encoded data block to the second initial

encoded data slice to produce the second encoded data
slice.

5. The method of claim 1 further comprises:

the first encoded data block processing order including

prioritizing processing of other encoded data blocks of
the first encoded data slice over the at least one redun-
dant encoded data block;

the second encoded data block processing order including

prioritizing processing of other encoded data blocks of
the second encoded data slice over the at least one redun-
dant encoded data block;

the first encoded data block processing order further

including determining whether the second DST execu-
tion unit is likely to process the at least one redundant
encoded data block before the first DST execution unit
and, when the second DST execution unit is unlikely to
process the at least one redundant encoded data block
before the first DST execution unit, assuming, by the
first DST execution unit responsibility for performing
the first partial task on the at least one redundant encoded
data block; and

US 9,195,684 B2

63

the second encoded data block processing order further
including determining whether the first DST execution
unit is likely to process the at least one redundant
encoded data block before the second DST execution
unit and, when the first DST execution unit is unlikely to
process the at least one redundant encoded data block
before the second DST execution unit, assuming, by the
second DST execution unit responsibility for perform-
ing the second partial task on the at least one redundant
encoded data block.

6. A method for execution by a distributed storage and task
(DST) execution unit, the method comprises:

receiving an assigned partial task and an encoded data

block processing order regarding processing an encoded
data slice, wherein a data segment of data is dispersed
storage error encoded in accordance with a data block
storage redundancy policy to produce a set of encoded
data slices, wherein a first encoded data slice of the set of
encoded data slices includes a first set of encoded data
blocks, a second encoded data slice of the set of encoded
data slices includes a second set of encoded data blocks,
and at least one redundant encoded data block is
included in both of the first and second sets of encoded
data blocks;

commencing execution of the assigned partial task on the

first set of encoded data blocks in accordance with the
encoded data block processing order;

executing the assigned partial task on the at least one

redundant encoded data block when latency of process-
ing the first set of encoded data blocks is favorable to
another DST execution unit latency of processing the
second set of encoded data blocks; and

skipping execution of the assigned partial task on the at

least one redundant encoded data block when the latency
of processing the first set of encoded data blocks is
unfavorable to the other DST execution unit latency of
processing the second set of encoded data blocks.

7. The method of claim 6, wherein the data block storage
redundancy policy comprises at least one of:

an indication of a number of encoded data blocks to include

in the at least one redundant encoded data block;

an indication of which DST execution units of a set of DST

executions units are to have overlapping redundant
encoded data blocks; and

an indication as to whether a DST execution unit of the set

of DST execution units is to have the overlapping redun-
dant encoded data blocks with multiple DST execution
units of the set of DST execution units.
8. The method of claim 6, wherein the latency of process-
ing the first set of encoded data blocks and the second set of
encoded data blocks comprises at least one of:
processing queues for first and second DST execution units
regarding outstanding partial tasks for execution,
wherein the first DST execution unit receives the first set
of encoded data blocks and the second DST execution
unit receives the second set of encoded data blocks;

historical processing times for each of the first and second
DST execution units regarding processing various types
of partial tasks;

network connection capabilities of each of the first and

second DST execution units;

processing resources of each of the first and second DST

execution units; and

predicted task execution response time for each of the first

and second DST execution units.

9. The method of claim 6, wherein the dispersed storage
error encoding the data segment comprises:

10

15

20

25

30

35

40

45

50

55

60

65

64

arranging the data segment into a data matrix of data

blocks;

encoding the data matrix with an encoding matrix to pro-

duce an encoded matrix that includes a plurality of
encoded data blocks;

creating an initial set of encoded data slices from the

encoded matrix, wherein one of the set of encoded data
slices includes a set of encoded data blocks of the plu-
rality of encoded data blocks;

identifying a first encoded data block of a first initial

encoded data slice of the initial set of encoded data
slices;

identifying a second encoded data block of a second initial

encoded data slice of the initial set of encoded data
slices;

appending the second encoded data block to the first initial

encoded data slice to produce the first encoded data
slice; and

appending the first encoded data block to the second initial

encoded data slice to produce the second encoded data
slice.

10. The method of claim 6 further comprises:

the encoded data block processing order including priori-

tizing processing of other encoded data blocks of the
first encoded data slice over the at least one redundant
encoded data block; and

the encoded data block processing order further including

determining whether another DST execution unit is
likely to process the at least one redundant encoded data
block before the DST execution unit and, when the other
DST execution unit is unlikely to process the at least one
redundant encoded data block before the DST execution
unit, assuming, by the DST execution unit responsibility
for performing the partial task on the at least one redun-
dant encoded data block.

11. A dispersed storage (DS) module of a computing
device to manage distributed computing of a task, the DS
module comprises:

afirst module, when operable within the computing device,

causes the computing device to:

determine a data block storage redundancy policy
among a set of distributed storage and task (DST)
execution units based on processing latency informa-
tion of the set of DST execution units;

a second module, when operable within the computing

device, causes the computing device to:

dispersed storage error encode, in accordance with the
data block storage redundancy policy, a data segment
of data to produce a set of encoded data slices,
wherein a first encoded data slice of the set of encoded
data slices includes a first set of encoded data blocks,
a second encoded data slice of the set of encoded data
slices includes a second set of encoded data blocks,
and at least one redundant encoded data block is
included in both of the first and second sets of encoded
data blocks; and

a third module, when operable within the computing

device, causes the computing device to:

assign a set of partial tasks to the set of DST execution
units regarding the set of encoded data slices;

assign a first partial task of the set of partial tasks and a
first encoded data block processing order to a first
DST execution unit of the set of DST execution units
regarding processing the first set of encoded data
blocks of the first encoded data slice; and

assign a second partial task of the set of partial tasks and
a second encoded data block processing order to a

US 9,195,684 B2

65

second DST execution unit of the set of DST execu-
tion units regarding processing the second set of
encoded data blocks of the second encoded data slice,
wherein the first encoded data block processing order
causes the first DST execution unit to execute the first
partial task on the at least one redundant encoded data
block when processing latency of the second DST
execution unit is unfavorable to processing latency of
the first DST execution unit and wherein the second
encoded data block processing order causes the sec-
ond DST execution unit to execute the second partial
task on the at least one redundant encoded data block
when the processing latency of the first DST execu-
tion unit is unfavorable to the processing latency of
the second DST execution unit.

12. The DS module of claim 11, wherein the data block
storage redundancy policy comprises at least one of:

an indication of a number of encoded data blocks to include

in the at least one redundant encoded data block;

an indication of which DST execution units of the set of

DST executions units are to have overlapping redundant
encoded data blocks; and

an indication as to whether a DST execution unit of the set

of DST execution units is to have the overlapping redun-
dant encoded data blocks with multiple DST execution
units of the set of DST execution units.

13. The DS module of claim 11, wherein the processing
latency information of the set of DST execution units com-
prises at least one of:

queues for each of the set of DST execution units regarding

outstanding partial tasks for execution;

historical processing times for each of the set of DST

execution units regarding processing various types of
partial tasks;

network connection capabilities of each of the set of DST

execution units;

processing resources of each of the set of DST execution

units; and

predicted task execution response time for each of the set of

DST execution units.

14. The DS module of claim 11, wherein the second mod-
ule functions to dispersed storage error encode the data seg-
ment by:

arranging the data segment into a data matrix of data

blocks;

encoding the data matrix with an encoding matrix to pro-

duce an encoded matrix that includes a plurality of
encoded data blocks;

creating an initial set of encoded data slices from the

encoded matrix, wherein an encoded data slice of the set
of encoded data slices includes a set of encoded data
blocks of the plurality of data blocks;

identifying a first encoded data block of a first initial

encoded data slice of the initial set of encoded data
slices;

identifying a second encoded data block of a second initial

encoded data slice of the initial set of encoded data
slices;

appending the second encoded data block to the first initial

encoded data slice to produce the first encoded data
slice; and

appending the first encoded data block to the second initial

encoded data slice to produce the second encoded data
slice.

20

35

40

45

50

55

65

66

15. The DS module of claim 11 further comprises:
the first encoded data block processing order including
prioritizing processing of other encoded data blocks of
the first encoded data slice over the at least one redun-
dant encoded data block;
the second data encoded block processing order including
prioritizing processing of other encoded data blocks of
the second encoded data slice over the at least one redun-
dant encoded data block;
the first encoded data block processing order further
including determining whether the second DST execu-
tion unit is likely to process the at least one redundant
encoded data block before the first DST execution unit
and, when the second DST execution unit is unlikely to
process the at least one redundant encoded data block
before the first DST execution unit, assuming, by the
first DST execution unit responsibility for performing
the first partial task on the at least one redundant encoded
data block; and
the second encoded data block processing order further
including determining whether the first DST execution
unit is likely to process the at least one redundant
encoded data block before the second DST execution
unit and, when the first DST execution unit is unlikely to
process the at least one redundant encoded data block
before the second DST execution unit, assuming, by the
second DST execution unit responsibility for perform-
ing the second partial task on the at least one redundant
encoded data block.
16. A dispersed storage (DS) module of a distributed stor-
age and task (DST) execution unit, the DS module comprises:
a first module, when operable within a computing device,
causes the computing device to:
receive an assigned partial task and an encoded data
block processing order regarding processing an
encoded data slice, wherein a data segment of data is
dispersed storage error encoded in accordance with a
data block storage redundancy policy to produce a set
of encoded data slices, wherein a first encoded data
slice of the set of encoded data slices includes a first
set of encoded data blocks, a second encoded data
slice of the set of encoded data slices includes a sec-
ond set of encoded data blocks, and at least one redun-
dant encoded data block is included in both of the first
and second sets of encoded data blocks; and
a second module, when operable within the computing
device, causes the computing device to:
commence execution of the assigned partial task on the
first set of encoded data blocks in accordance with the
encoded data block processing order;
execute the partial task on the at least one redundant
encoded data block when latency of processing the
first set of encoded data blocks is favorable to another
DST execution unit latency of processing the second
set of encoded data blocks;
skip execution of the partial task on the at least one
redundant encoded data block when the latency of
processing the first set of encoded data blocks is unfa-
vorable to the other DST execution unit latency of
processing the second set of encoded data blocks.
17. The DS module of claim 16, wherein the data block
storage redundancy policy comprises at least one of:
an indication of a number of encoded data blocks to include
in the at least one redundant encoded data block;
an indication of which DST execution units of a set of DST
executions units are to have overlapping redundant
encoded data blocks; and

US 9,195,684 B2

67

an indication as to whether a DST execution unit of the set
of DST execution units is to have the overlapping redun-
dant encoded data blocks with multiple DST execution
units of the set of DST execution units.
18. The DS module of claim 16, wherein the latency of
processing the first set of encoded data blocks and of the
second set of encoded data blocks comprises at least one of:
processing queues for first and second DST execution units
regarding outstanding partial tasks for execution,
wherein the first DST execution unit receives the first set
of encoded data blocks and the second DST execution
unit receives the second set of encoded data blocks;

historical processing times for each of the first and second
DST execution units regarding processing various types
of partial tasks;

network connection capabilities of each of the first and

second DST execution units;

processing resources of each of the first and second DST

execution units; and

predicted task execution response time for each of the first

and second DST execution units.

19. The DS module of claim 16, wherein the dispersed
storage error encoding the data segment comprises:

arranging the data segment into a data matrix of data

blocks;

encoding the data matrix with an encoding matrix to pro-

duce an encoded matrix that includes a plurality of
encoded data blocks;

creating an initial set of encoded data slices from the

encoded matrix, wherein one of the set of encoded data

5

10

15

20

25

68

slices includes a set of encoded data blocks of the plu-
rality of encoded data blocks;

identifying a first encoded data block of a first initial
encoded data slice of the initial set of encoded data
slices;

identifying a second encoded data block of a second initial
encoded data slice of the initial set of encoded data
slices;

appending the second encoded data block to the first initial
encoded data slice to produce the first encoded data
slice; and

appending the first encoded data block to the second initial
encoded data slice to produce the second encoded data
slice.

20. The DS module of claim 16 further comprises:

the encoded data block processing order including priori-
tizing, by the second module, processing of other
encoded data blocks of the first encoded data slice over
the at least one redundant encoded data block; and

the encoded data block processing order further including
determining, by the second module, whether another
DST execution unit is likely to process the at least one
redundant encoded data block before the DST execution
unit and, when the other DST execution unit is unlikely
to process the at least one redundant encoded data block
before the DST execution unit, assuming, by the DST
execution unit responsibility for performing the partial
task on the at least one redundant encoded data block.

#* #* #* #* #*

